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Cohesive interparticle forces may affect granular and fluidized flow 

applications by influencing minimum fluidization velocities and segregation 

behavior, and can lead to complete loss of flowability.   These forces include van der 

Waals, liquid-briding, electrostatic, and magnetic forces.  Despite the prevalence of 

cohesive effects in particulate flows, the incorporation of cohesion into continuum 

models is limited.  Most cohesion models are defined as a continuous function of the 

separation distance between interacting particles.  The continuous nature of these 

models conflicts with the assumption of instantaeous, binary collision inherent in the 

kinetic theory used to develop continuum models. A model that incorporates cohesive 

forces as binary, instantaneous impulses is the square-well model.  In this work, the 

square-well model was incorporated into discrete-particle simulations of  granular 

flow and fluidized flow to test the ability of the model to capture the physics of 

cohesive flows. 

 For simple shear flows, an investigation of the input parameter space indicates 

the presence of two distinct flow regimes.  For large cohesive forces, a large, single 

agglomerate is formed.  For moderate cohesive forces, the sheared system is 

composed of evenly distributed 2-particle, dynamic agglomerates.  The results for this 

regime indicate that cohesion attenuates the stress components at higher solids 



 

fractions (in the collisional regime), as compared to the non-cohesive case.  At lower 

solids fractions (kinetic regime), cohesive forces do not impact the observed stress.  

Within a fluidized bed simulation, a method to map the parameters of the 

square-well model to equivalent parameters in the Hamaker model has been 

developed based on the minimum, relative normal velocity required to escape 

agglomeration in two-particle simulations.   Mapping effectiveness was gauged by 

measuring the minimum fluidization velocity, mixing index, and average particle 

movement at varying levels of cohesion.   

 The cohesive fluidized bed simulation was used to study hysteresis behavior 

observed during defluidization-fluidization cycles of experimental fluidized beds.  In 

both cohesion models, cohesive particle-particle are the primary cause for the 

pressure overshoot for the parameters considered.  Simulations using the square-well 

cohesion model indicate that cohesive interactions between particles and the 

distributor plate (bottom wall) are a secondary mechanism whereas,  simulations 

using the Hamaker model reveal that cohesive interactions between particles and the 

sidewalls are a secondary mechanism.  
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Chapter 1. Introduction 

 
1.1 Solids Processing Applications 

The need to process solid particulates is common to many industries.  For 

instance, in the chemical industry, it is estimated that 60 percent of the products are in 

the form of solid particulates [1].  Aside from the chemical industry, solids handling 

operations are also used in the food preparation, pharmaceuticals, power and utilities, 

and metals industries [2].  Thousands of companies spend millions of dollars every 

year in an effort to move, mix and react solid materials [3].    

Flows occurring in solids handling applications can be divided into two 

groups: granular flows and fluidized flows.  Granular flows refer to situations in 

which the solid particles are massive enough such that the interstitial fluid does not 

significantly affect particle movement.  In fluid-solid flows, the interstitial fluid does 

have a significant effect on the movement of the particles.  In the following sections, 

some examples are presented of both types of solids flow applications. 

An understanding of granular flows is important in the pharmaceutical 

industry. The ability to mix solids in a reproducible manner is essential to ensure that 

pills and capsules deliver the correct dosage of medication.  Although the Food and 

Drug Administration requires elaborate clinical trials to ensure that experimental 

drugs are safe for the general public [4], these trials are futile if the drugs cannot be 

manufactured reproducibly. While an operation as simple as mixing two drug 

components together may seem like a trivial task, the tendency of particles to 

segregate can lead to products that are ineffective or unsafe.  Such segregation can 

arise due to differences in particle size and/or density [5, 6].  In some cases, 
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interparticle cohesion has been found to either mitigate or enhance cohesion, 

depending on the nature of the cohesive forces [7].    

The importance of granular flows is not limited to the pharmaceutical industry.   

Poor handling of solids can lead to wasted material and energy in the mining industry 

[8].  Non-uniform pouring of powder material can lead to defective die-pressed 

products [9].  In the food industry, special attention must be paid to particle 

segregation as it has been found that if spice particles are too large, then potato chips 

will have no taste [10].  These examples represent a few applications of granular 

flows, and some of the relevant problems in each area. 

Fluid-solid flows present additional challenges as the influence of the fluid 

phase can lead to additional flow complexities. A key example of fluidization occurs 

in the oil industry. Crude oil is separated into its useful components through the 

distillation process.  However, a portion of the crude oil is made up of long-chain 

hydrocarbons that are not very useful on their own.  In order to convert this portion 

into a useful product, the long chains must be broken apart in a process called 

catalytic cracking [11].  This process requires that the unusable crude be brought into 

contact with solid catalyst powder.  The first plant to utilize this process went into 

operation in 1936 and used simple fixed bed of catalyst.  In 1942, a fluidized bed was 

first used in place of the fixed bed.  A typical fluidized bed schematic is shown in 

Figure 1.1.  In this system, the solid is in the form of particles that are free to move 

about in the reactor.  Fluidized beds provide more efficient contacting between the 

solid and the fluid and are integral in enabling catalytic cracking to be a practical, 

industrial-scale process.  
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To illustrate the importance of this process during World War II, catalytic 

cracking made it possible to produce 100-

octane fuel, giving British planes a 50% 

faster burst of speed over German planes 

using only 85-octane.  This advantage led 

to a loss of only 915 British planes to 1733 

German planes during the Battle of Britain 

[12].  Today, fluidized beds are an 

essential component of fluid catalytic 

cracking systems that have the capacity to 

process 12.7 millions barrels of oil a day 

[13],  and allow gasoline producers to 

make more useful product from raw crude oil.  In particular, an increase in product 

selectivity of 1% allows a reduction in oil imports by more than 22 million barrels of 

crude per year [12].  Despite the advantages of catalytic cracking, these systems still 

incur problems that waste time, money and resources.  For example, the cohesive 

nature of most catalyst powders makes them unpredictable and difficult to fluidize  

leading to the loss of catalyst and improper catalyst circulation [11].  Similar 

problems are encountered in other fluidized flow systems. 

Fluidized beds have been used in the production of other products including 

polymers [14], nanotubes [15] and liquid hydrocarbons via the Fischer-Tropsch 

synthesis [12].  Fluidized beds are also used to remove unwanted materials from 

wastewater streams [14] and to remove pollutants from the atmosphere [16].  Other 

Fig. 1.1  Fluidized Bed Schematic 
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fluidized systems of importance include pneumatic conveyers [2] and cyclone 

separators [17].   In all these systems, the complex nature of the gas-solid interaction 

can lead to serious operating problems. 

It has been estimated that most solids handling systems operate at only 60% of 

their design capacity [18].  A key reason for the problems encountered in solids 

handling operations is that many of these systems are poorly understood.  A greater 

understanding of these solids-handling systems will make the processes more 

efficient, kinder to the environment, and safer to those involved.  For example, 

improved knowledge will allow mixers in pharmaceutical applications to be designed 

in a way that mitigates unwanted particle segregation.  Also, new techniques can be 

developed to fluidize cohesive catalyst powders that normally resist flow. 

The overall goal of this work is to gain a greater understanding of solids 

handling systems with a focus on the effects of short-range cohesion (e.g. van der 

Waals forces) between particles.   In the following section, an overview of cohesive 

forces will be presented.   

 

1.2  Particle Cohesion 

Cohesive forces may arise from a variety of sources including liquid bridges, 

van der Waals forces, electrostatic forces and magnetic forces.  In systems composed 

of solid particulates, two of the most prevalent inter-particle forces are the liquid-

bridging force and the van der Waals force [19-24].  Liquid-bridging forces arise 

when the liquid film on a particle comes into contact with another surface.  Both 

capillary (static) forces (surface tension, hydrostatic pressure and buoyancy) and 
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viscous (dynamic) forces may result. A variety of models to describe the capillary 

forces are available, a key facet of which is the method used to determine the shape of 

the liquid bridge.  In early models, the contour of the liquid bridge has been 

approximated using shapes such as circular arcs and hyperbolas (see [22] for review).  

Models using this approximation for the shape of the liquid bridge work well at low 

particle separation distances, but tend to underestimate the attractive force at high 

particle separation distances [25]. More recently, the shape of the liquid bridge has 

been approximated via numerical solutions of the Laplace-Young equation, which 

equates the surface tension of the curved bridge to the pressure deficiency across the 

gas-liquid interface.  (see [26] for a review).  Despite the variation in treatments, each 

of these liquid-bridging models provides the magnitude of the particle-particle 

attractive force as a function of the separation distance (i.e., attractive force varies 

continuously with separation distance). 

Van der Waals forces include dipole-dipole, dipole-non-polar and 

instantaneous dipole (dispersion) forces.  London [27] quantified these forces by 

developing an expression for the attractive force between two molecules as a function 

of their separation distance. The resulting force depends on the polarizability of the 

molecule.  Hamaker [28] integrated the molecule-molecule attractive force over entire 

solid bodies in order to obtain expressions for the attractive force between solid 

bodies of simple geometric shapes.  A key assumption of this model is that all forces 

are two-body and additive.  A more recent theory by Lifshitz [29] does not require 

such assumptions. Instead, by treating the solid bodies as continua, the attractive 

force is determined using bulk material properties only (dielectric constant and 
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refractive index). Similar to the liquid-bridging models noted above, all of these 

models treat van der Waals forces as a continuous function of the inter-particle 

distance.   

 

1.3  Types of Particulate Flows 

Experimental efforts to study the effects of cohesion on the overall bulk flow 

can be organized into those involving granular systems and fluidized systems. As 

stated previously, fluidized systems refer to situations in which the interstitial gas 

flow significantly affects the particle movement.  Two examples of fluidized flow 

systems are fluidized beds and pneumatic conveyers.  Granular systems, in which the 

interstitial fluid effects are negligible, can be further divided into rapid flows and 

slow flows.  Rapid flows are characterized by instantaneous, binary contacts like 

those occurring in hoppers or mixing systems.  Slow flows are characterized by 

enduring, frictional contacts like those seen in soil mechanics or silos.  The focus of 

this work will be limited to rapid granular flow systems and fluidized systems, 

namely those that tend to be characterized by fairly short collisions between two 

particles.  The following sections review some of the previous efforts to study 

cohesion in these systems.   

 

1.3.1 Rapid Granular Flows with Cohesive Particles 

 A large number of experimental granular flow efforts involve mixers.  These 

flows are primary slow flows, except at the surface of the particle bed.  The efforts 

described herein have involved adding a controlled amount of liquid to the system in 
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order to increase the level of cohesion via liquid bridging. Tegzes et al. performed 

experiments with a drum roller and controlled liquid-bridging forces [30-32]. A drum 

roller is a cylinder, filled with particles, capable of rotating around its longitudinal 

axis at a controlled rate.  As the cylinder rotates, a bed of particles inside the cylinder 

mixes and the angle formed by the surface of the particles as they avalanche back 

onto themselves is called the dynamic angle of repose.  Using this apparatus, Tegzes 

et al. identified three different flow regimes depending on the liquid loading.  Each of 

these regimes exhibited different avalanching behavior, yet the dynamic angle of 

repose increased as the liquid loading increased in each regime.  Nase et al. 

characterized cohesive granular systems by measuring static and dynamic angles of 

repose as well as hopper discharge rates [33]. They characterized their results in terms 

of a the granular bond number which relates the cohesive force to the particle weight.  

They concluded that this simplified force ratio may be used to predict the ability of 

cohesive particles to flow.  Li and Mcarthy [34] have shown that the addition of water 

to granular materials can lead to enhanced segretation through the action of liquid 

bridging forces.  They were also able to characterize their results with the granular 

bond number. 

 

1.3.2 Fluid-Solid Flows with Cohesive Particles 

Many of the same techniques used to study rapid granular flows of cohesive 

particles are used to study fluidized flows of cohesive particles.  The following 

sections review the relevant experimental efforts to study the flow of cohesive 

particles in fluidized systems. 
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1.3.2.1 Geldart Classification System  

The Geldart classification system is used to identify the fluidization behavior 

of solid particles in a vertical gas-solid fluidized bed at ambient conditions.  In this 

system, gas flows upward through a distribution plate at a velocity great enough to 

fluidize (but not carry over) the particles as shown in Figure 1.1. The Geldart 

classification system [35] groups particles that exhibit similar fluidization 

characteristics according to particle diameter (dp) and density difference between the 

two phases ( gs ρρ − ) (ρs is the density of the particles and ρg is the density of the 

interstitial fluid.  A rough sketch of this classification is illustrated in Figure 1.2.  

Type D particles form spouted fluidized beds. Type B particles exhibit bubbling at the 

point of incipient fluidization. Type A (aeratable) powders are known to exhibit both 

uniform fluidization without bubbles as well as bubbling fluidization (at higher gas 

velocities).  Type C (cohesive) particles, which are relatively small particles, are 

known to be difficult to fluidize due to the increasing importance of cohesive forces.  

Particles of this type often form cracks, channels, and sometimes rise in the bed as a 

solid plug as illustrated in Figure 1.3. 
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 In addition to classifying particles based on their observed behavior, Geldart 

[35] derived empirical expressions to predict the boundaries between Type A and 

Fig. 1.3 Geldart Type C behavior 
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Type B particles, as well as and between Type B and Type D particles.    Molerus [36] 

later developed an expression to define the transition from Type A behavior to Type 

C behavior by comparing the maximum drag force to the cohesive force based on the 

Lifshitz [37] model for van der Waals forces.  The results of Molerus’  work suggest 

that this boundary occurs when the ratio of cohesive force to particle weight is 

approximately 1900.  This Type A –Type C transition is especially important because 

it defines which particles can be easily fluidized and which particles cannot.  While 

data for naturally (not induced using an interstitial fluid) cohesive particles agreed 

with the boundary derived by Molerus, they did not assess the accuracy of this 

boundary by controlling the level of cohesion in some way and designing systems 

that would be near the transition. 

 More recently, several fluidized bed studies have controlled the force ratio 

using the same method described in the previous section for granular systems.  By 

adding a controlled amount of non-volatile liquid to the fluidized bed system, 

researchers have induced liquid bridging forces while holding the weight of the 

particles constant [38-41].  The magnitude of the liquid bridging force in the 

experiment can be estimated using existing liquid-bridging models, allowing 

researchers to effectively set the ratio of cohesive force to particle weight in their 

system.    McLaughlin and Rhodes [38] focused on the force ratio at the point of the 

Type A-Type C transition.  Their results showed that the critical ratio value is 

approximately unity, much smaller than the value (~1900) predicted by Molerus [36].  

This discrepancy may be due to the different cohesion models used in the two studies. 
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McLaughlin and Rhodes used a liquid-bridging model while Molerus used a van der 

Waals model.  This issue has yet to be resolved and will be revisited in Chapter 7.   

Aside from the transition from flowable to non-flowable particles, some of the 

studies mentioned here also contained observations of more subtle effects of cohesion.  

For mild levels of cohesion (no plugging), several researchers observed an increase in 

the minimum fluidization velocity as the level of cohesion was increased [39-42].  

The mechanisms behind this phenomenon are still not fully understood. 

 1.3.2.2 Agglomerate Fluidization of Cohesive Particles 

 Agglomerate fluidization is an effect of cohesion that is not accounted for in 

the traditional Geldart classification system.  Several researchers [43-46] have 

observed that low-density Type C particles can be fluidized at gas velocities much 

higher than the expected minimum fluidization velocity for the individual particle 

diameters.  These particles initially form channels, but as the gas velocity is raised, 

the channels break apart and the particles form stable agglomerates that fluidize 

uniformly.  Vibrational [47-50] and acoustic [51-57] flow assistance are often used 

with these types of particles.  The subject of agglomerate fluidization will be 

discussed in more detail in Chapter 9. 

 

1.4. Experimental and Modeling Approaches 

 To further the understanding of cohesive effects in particulate systems, both 

experimental and modeling techniques offer complementary advantages…  

Experiments provide data for realistic systems, whereas models are often limited to 

idealized systems.  In particular, certain assumptions may be necessary in the 
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development of mathematical models, such as perfectly spherical particles, perfectly 

smooth particles, or a monodisperse medium.  Such physical assumptions limit the 

range over which the results are valid.   Other simplifications are often necessary to 

make the models computationally tractable, such as simplified geometries and a 

limited number of particles (in the case of discrete-particle simulations).  

 Despite these limitations, mathematical models have some advantages over 

laboratory experiments.  The use of simulations allows investigators to obtain values 

for parameters that may be difficult to measure experimentally.   For example, 

although noninvasive measurements of the position and velocity of individual 

particles in a fluidized system exist [58], these methods are fairly restrictive in the 

types of systems they can be applied to (e.g., dilute flows).  In addition, the effort and 

expense associated with these techniques are nontrivial.  Alternatively, discrete-

particle models of a fluidized bed allow for a straightforward calculation of the 

position and velocity of each particle as a function time.   

Another advantage of mathematical models is that each parameter of the 

system can be controlled independently.  In laboratory experiments, many of the finer 

aspects of the system cannot be varied independently.  For example, particle cohesion 

has been controlled experimentally by adding a liquid to the system such as water, oil 

or surfactant to control the volume of the liquid bridges formed between particles [33, 

38, 39, 59].  However, the addition of liquid can also change the density and viscosity 

of the fluidizing gas, as well as the density of the particles [60].  Such complications 

make it difficult to pinpoint the primary cause for a change in system behavior.  
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Models offer an alternative approach in this situation because the cohesive forces 

alone can be applied without impacting other system parameters.   

This level of control is an even more powerful tool when models are used to 

selectively add and remove physical mechanisms in order to explore systems that 

cannot be achieved experimentally.   For example, particle-particle cohesion can be 

turned on or off, or applied only to certain particles in the simulation, such as those in 

contact with a wall.  The ability to simulate these physically unrealistic situations 

allows for the isolation of individual mechanisms. For example, when considering the 

effect of cohesion on behavior of a fluidized bed, the importance of particle-wall 

cohesion relative to particle-particle cohesion is not well understood(as will be 

discussed in Chapter 8).  Using a fluidized-bed simulation, particle-wall cohesion (or 

particle-particle cohesion) can be removed in a straightforward manner.  The results 

of such a simulation can then be compared to the results of a base simulation to 

determine the effect of the isolated mechanism.  

 In the current effort, a mathematical model is developed to gain insight into 

the behavior of cohesive-particle flows.  Generally speaking, particle flows can be 

modeled using either a continuum or discrete-particle (molecular dynamics) approach.  

Continuum (Eulerian) models treat the particles as a continuous phase, while discrete-

particle (Lagrangian) models determine the movement of each individual particle.    

Advantages and disadvantages exist in both approaches.  The next section will 

discuss how the strengths of both approaches can be used together to further the 

fundamental understanding of solids handling applications.  
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1.5 Overview of Current Effort 

Continuum models treat the particles as a continuous phase via a mass and 

momentum balance for that phase, along with appropriate constitutive equations. For 

rapid flows, a kinetic-theory analogy [61, 62] is typically used to develop constitutive 

relations needed for continuum models.  Inherent in the kinetic-theory approach is the 

assumption that particle-particle interactions are both binary and instantaneous. As 

mentioned previously, cohesive forces are not inherently instantaneous, and thus the 

incorporation of cohesive forces into the kinetic theory framework is not 

straightforward. Unlike continuum models, discrete-particle simulations track 

particles in the system via the solution of a separate momentum balance for each 

particle.  Most existing descriptions for particle cohesion can be applied to discrete-

particle models while not conflicting with any assumptions inherent in the simulation. 

Discrete-particle simulations provide a straightforward means of incorporating 

interparticle attraction because cohesive forces can be applied directly to each 

particle-particle interaction. However, discrete-particle simulations are limited by the 

computational requirements arising from the solution of a separate momentum 

balance for each particle.  In contrast, continuum models based on the kinetic theory 

provide a less computationally demanding means of investigating particulate flows, 

but they are restricted by the assumptions implicit in their constitutive relations (e.g. 

instantaneous, binary contacts).  

With these ideas in mind, a primary goal of this project is to investigate an 

alternative description of cohesive forces (i.e., short-range, attractive forces), namely 

the square-well potential.  The square-well description treats cohesion as arising from 
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impulsive events, and thus represents a possible means of incorporating cohesive 

effects into continuum models.  The performance of the square-well approximation 

for cohesive forces is investigated via discrete-particle simulations.  

 

1.6 Thesis organization 

This thesis is comprised of two main efforts. The first part deals with discrete-

particle simulations of granular flow shear flow, while the second portion deals with 

discrete-particle simulations of a fluidized flow bed.  Chapters 2-4 cover the effort to 

incorporate the square-well cohesion model into the granular flow simulation.  The 

effectiveness of this model is assessed through an exploration of the parameter space. 

Chapters 5-7 contain a description of the effort to incorporate the square-well model 

into a fluidized flow simulation.  A more elaborate Hamaker model for van der Waals 

forces is also applied to the fluidized flow simulation in order to provide a benchmark 

with which to compare the square-well model.  In Chapter 8, the cohesive fluidized 

flow simulation is used to study the hysteresis effects observed in fluidized bed 

experiments. Specific particle-particle and particle-wall interactions are selectively 

excluded from the simulation in order to gain more insight in the pressure overshoot. 

In Chapter 9, a summary of the results and suggestions for future work are given.  
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Chapter 2.  Review of Granular Flow Models for Cohesive Systems 

As stated in the previous chapter, granular flows can be modeled using either 

a continuum (Eulerian) or a discrete-particle (Lagrangian) approach.  As the focus of 

this project is on discrete-particle simulations, the background information given 

below is targeted at this type of model.  Following that discussion, a review of 

previous Eulerian and Lagrangian models for cohesive-particle systems is given.  The 

roots of discrete-particle simulations can be found in molecular dynamics simulations.  

Cundall and Strack extended the molecular dynamics approach to flows of 

macroscopic, solid particles by incorporating inelastic particle interactions [1, 2].   

The application of molecular dynamics to macroscopic particles has been further 

reviewed by Walton [3].  The first discrete-particle models developed by Cundall and 

Strack were applied to slow flows (flows with enduring contacts), but later they were 

applied to rapid granular flows (collision-dominated flows) by Campbell [4].  

Discrete-particle models have subsequently been applied to studies of applications 

such as mixing [5-10], packing [11], and hopper discharge [12-14].  Discrete-particle 

models have also found great utility as a testbed to help develop constitutive relations 

based on kinetic theory [15-18].  Before proceeding into a review of cohesion in 

discrete-particle models, some important distinctions between various discrete-

particle models are covered below. 

 

2.1 Hard-Sphere versus Soft-Sphere Approach 

 A hard-sphere approach [19] to discrete-particle simulations differs from a 

soft-sphere approach in the manner in which particle-particle contacts are resolved. 
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For hard-sphere systems, these contacts are instantaneous and characterized by 

impulsive transfers of momentum.  Furthermore, collisions occur only between two 

particles at a time.  The magnitude of the normal component of the post-collisional 

relative velocity is determined via the coefficient of restitution (i.e., a measure of 

inelasticity), whereas the magnitude of the tangential component of the post-

collisional velocity is based on parameters characterizing the frictional interaction 

(e.g., friction coefficient).  Soft-sphere simulations [1, 20] treat particle-particle 

interactions as enduring contacts that generate forces which change over the duration 

of the contact.  Furthermore, multi-particle contacts are possible.  For soft-sphere 

systems, a force law is used to determine the magnitude of the force experienced by 

each particle based on the level of particle deformation (i.e., overlap).  The 

critical difference between these two contact algorithms lies in the instantaneous, 

binary nature of collisions in the hard-sphere approach versus the enduring, multi-

particle contacts utilized in the soft-sphere approach.  These differences make the 

hard-sphere model more computationally efficient, though less robust than its soft-

sphere counterpart.  Soft-sphere simulations can be used to simulate both rapid and 

slow flow, whereas hard-sphere simulations are only applicable to rapid granular 

flows.  

 

2.2 Event-Driven versus Time-Stepped Algorithms 

 Another key aspect of discrete-particle simulations is the type of algorithm 

used to advance the particles in time.  Event-driven (predictive) algorithms [19] 

operate via a determination of the trajectories of every particle and a compilation of 
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an upcoming-collisions list. In these simulations, every particle is moved along its 

trajectory for the time needed to reach the next collision.  Once that collision is 

resolved, the time to the next collision is determined, and the process is repeated.  In 

this way, the simulation will proceed at varying time steps from one collision to the 

next.  Because no particle overlap exists in such a simulation, event-driven algorithms 

are applied exclusively to hard-sphere systems. 

 For time-stepped algorithms [1, 20], all particles are advanced over a set 

amount of time.  After this particle advancement, a check is performed to determine if 

any particle overlaps exist.  Particle overlaps are indicative a collision.  For all 

identified collisions, a contact model (e.g., soft sphere) is applied and the simulation 

is then advanced again in time.  The time step is set small enough so that numerical 

inaccuracies are minimized.  Because time-stepped models involve a slight particle 

overlap, this algorithm is always applied in conjunction with soft-sphere systems.  

Nonetheless, for some hard-sphere systems, a time-stepped algorithm has been used 

for purposes of improved computational efficiency [16].      

The computational time necessary to simulate a given period of real time 

depends on the time step employed in the simulation. For event-driven algorithms, the 

time step is determined by the time to the next collision, and this value changes for 

each subsequent collision.  In general, dilute systems will result in larger time steps, 

while dense systems will have smaller time steps.   For time-stepped algorithms, the 

user specifies the time step.  Smaller time steps will result in more accurate results; 

however, smaller time steps also result in longer simulation times.  While most time-

stepped algorithms use a constant time step, some efforts use variable time steps (for 
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example, via adjustment of the time step based on parameters such as average 

collision overlap) to ensure that an efficient time step is used throughout the entire 

simulation [16].  In either case, the choice of time step for time-stepped algorithms is 

always a tradeoff between accuracy and computational time. 

 

2.3 Previous Models of Rapid Granular Flows of Cohesive Particles 

The implementation of cohesion into continuum models of granular flow has 

been very limited due to the assumptions inherent in such models.  Namely, 

continuum models for particulate flows are typically based on a kinetic-theory 

analogy, which requires that particle interactions are both binary and instantaneous.  

As described earlier, however, cohesive forces (e.g., van der Waals forces) vary 

continuously with separation distance.  Kim and Arastoopour [21] developed a 

kinetic-theory model for granular flows that incorporates cohesion via a contact 

bonding energy.  The contact bonding energy, which is a function of the surface 

properties of the material, is only activated at particle-particle contact.  The resulting 

cohesive force is thus treated as instantaneous in nature. Moreover, agglomeration 

occurs when particles do not have a large enough kinetic energy (based on the relative 

particle velocity) to overcome the contact bonding energy.   After agglomeration, the 

two particles are treated as a single spherical particle with the same total volume, 

thereby resulting in a decrease in the total number of particles in the system.  This 

continuum model does not allow for particles (or agglomerates) of different sizes to 

co-exist, nor does it allow for de-agglomerations.  The resulting model was used to 
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predict particle growth, shear stress and normal stress, which were found to agree 

qualitatively with expected behaviors. 

The nature of discrete-particle models makes them more amenable to the 

incorporation of cohesive effects.  In particular, cohesive forces are not restricted to 

being treated as instantaneous events, and thus many such contributions have been 

documented in the literature.   

McCarthy and Ottino [6] developed a soft-sphere simulation that incorporates 

liquid-bridging forces.  The liquid-bridge description formulated by Lian et al. [22], 

which involves a numerical solution of the Laplace-Young equation, was utilized. 

These simulations were used to predict the results from static and dynamic angle-of-

repose experiments, and the comparisons showed good agreement.  

Baxter et al. [14] utilized a discrete-particle simulation that incorporates 

cohesive forces.  Their interparticle force model is similar to a Lennard-Jones model, 

which varies continuously with separation distance and contains both attractive and 

repulsive components.  A unique component of their model, however, is that it 

contains an additional, attractive force at small amounts of particle overlap. Results of 

the simulation provide insight into the most efficient procedures to use in the 

discharge of hoppers.  

Mei et al. [23] incorporated the Johnson-Kendall-Roberts (JKR) force-

displacement model [24] into a simple shear flow simulation. The JKR model 

incorporates attractive surface forces into a model for the deformation of contacting, 

elastic solids.  This study revealed that concentration non-uniformity in shear flows 

changes significantly once the shear rate drops below a critical value.  
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Muguruma et al. [25] developed a model of a rotating tumbler with liquid 

bridging forces between the particles and compared the results with those of 

experimental tumblers.  Velocity profiles in the simulated tumbler agreed 

quantitatively with velocity profiles observed on high-speed video analysis in the 

experimental tumbler.  The variation in the velocity with the volume of liquid added 

also agreed well between experiment and simulation.   

Matuttis and Schinner [26] performed static angle-of-repose simulations using 

a discrete-particle approach with a cohesive force that is assumed proportional to the 

contact area.  They found that no systematic differences exist between the results of 

their two-dimensional simulation and three-dimensional experiments.   

Yang and Hsiau incorporated liquid-bridging forces into a discrete-particle 

model of a vibrated bed [27].  Their results showed that the dissipation of energy 

increases monotonically with liquid-bridge volume. 

In each of the discrete-particle simulations of cohesive flow presented above, 

the cohesive force models utilized vary continuously with inter-particle distance (i.e. 

the forces are not impulsive).  As described in Chapter 1, the continuous nature of 

these models makes them difficult to incorporate into continuum models derived from 

kinetic theory.  A square-well description of cohesion, however, overcomes these 

obstacles by offering a simplified picture of the cohesive interaction (i.e., one which 

is instantaneous and binary in nature).  Hence, an assessment of its ability to predict 

the flow behavior of cohesive particles is warranted.   
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Chapter 3.  Granular Flow Simulation Description 

 Rapid, granular shear flow is simulated using identical, two-dimensional 

frictionless, circular discs in a LxL periodic simulation domain. In this simulation, 

Lees-Edwards [1] boundary conditions are used to achieve a simple shear flow in the 

x-direction, as illustrated in Figure 3.1.  Since no external forces (e.g., gravity) are 

applied to the particles, all particles move with linear trajectories between impulsive 

interactions with other particles.   

 Key aspects of this simulation include the initialization procedure, the 

criterion used to identify a steady state, as well as the inputs and outputs of the system.  

Also important are the methods used to resolve particle-particle interactions and the 

procedure used to advance the particles in time between interactions.  Each of these 

issues is discussed in the sections that follow. 

 

  

Fig. 3.1 Granular flow simulation domain 
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3.1 Particle-Particle Interactions 

 Particles in this simulation are hard-sphere (instantaneous contacts) in nature 

and may interact in two different ways: inelastic collisions and cohesive interactions. 

Inelastic collisions occur when the particles are in physical contact (i.e., when the 

distance between the particle centers is the sum of two particle radii).  As illustrated 

in Figure 3.2, cohesive interactions are modeled using a square-well potential.  Two 

parameters are needed to define the square well: the well width, router, and the well 

depth, D.  Cohesive interactions result from the impulsive forces which arise when 

the center-to-center distance of the two particles is equal to twice the width of the 

square well (2router), which is always larger than twice the particle radius 

(2router>2rinner). Only rinner is a physical particle radius.  The magnitude of the 

cohesive impulse is controlled by the depth of the square-well potential. 

  
Fig. 3.2 The square-well potential 
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For both inelastic collisions and cohesive interactions, an instantaneous 

transfer of momentum takes place between the particles that results in the following 

change in momentum for particles i and j: 

,*ij*pre,ipost,i kJvmvm
��� −=      (3.1) 

,*ij*pre.jpost,j kJvmvm
��� +=      (3.2) 

where m  is the mass of an individual particle, pre,iv
�

 and post,iv
�

 are the pre- and post-

interaction velocities, respectively, of the ith particle, *,ijk
�

is the unit vector pointing 

from the center of the ith particle to the center of  the jth particle, and *J  is the 

magnitude of the impulse of momentum transferred during the particle-particle 

interaction (either inelastic collision or cohesive interaction).   

 

3.1.1 Inelastic Collisions 

For all inelastic collisions, the net momentum is conserved and a portion of 

the granular energy (kinetic energy associated with the translational velocity relative 

to the mean flow velocity) is lost.  The fraction of granular energy lost is determined 

by the coefficient of restitution (e ) which is a measure of the inelasticity that varies 

between zero and unity (where e = 1 represents a perfectly elastic collision): 

( )b,ij,ijc,ij,ij vkevk
����

⋅−=⋅ 22      (3.3) 

where 

jiij vvv
��� −=        (3.4) 
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and 2,ijk
�

 is the unit vector pointing from the center of the ith particle to the center of 

the jth particle at the point of physical contact (at separation distance of 2rinner), b,ijv
�

is 

the relative velocity between the two particles before collision, and c,ijv
�

 is the relative 

velocity after collision.  The relative velocity is defined in terms of the velocities of 

the ith particle, iv
�

, and the jth particle, jv
�

, as shown in equation 3.4.  Performing a 

momentum balance in conjunction with the definition of the coefficient of restitution, 

along with the simplification that the velocity only changes in the normal direction 

(frictionless particles), leads to the following equation for the impulse during an 

inelastic collision: 

( )( )b,ij,ijin vke
m

J
��

⋅+= 21
2

     (3.5) 

Substitution of this expression into equations 3.1 and 3.2 yields the post-collisional 

velocity of both particles in terms of e and the pre-collisional velocities.  (Although 

the effects of friction are not included in the current effort, such effects could be 

incorporated via the simultaneous solution of the angular momentum balance in 

conjunction with a suitable friction model.) 

 

3.1.2 Cohesive Interactions 

Based on the square-well potential, cohesive forces are incorporated into the 

simulation as instantaneous forces whenever the separation distance is equal to 2router. 

These forces occur when two particles are approaching one another or when they are 

moving away from each other.  A typical interaction sequence is shown in Figure 3.3.  



 30 

The approaching-cohesive interaction occurs when distant particles become separated 

by 

2router.  At this point, particles experience an instantaneous, attractive force (which 

corresponds to an increase in the normal component of the relative velocity between 

particles).  Particles then move in a straight-line trajectory which leads to an inelastic 

collision if the particle separation distance reduces to 2rinner.  Following the collision, 

particles travel in a straight path until the departing-cohesive interaction, which 

occurs at a separation distance of 2router. If the magnitude of the relative, normal 

velocity is not large enough, an internal reflection of the particles from the well 

occurs, which is referred to as a capture-cohesive interaction.  In this case, the 

trajectory is symmetric about the outer wall of the square well, which may lead to 

another inelastic collision (thereby resulting in a further loss of granular energy). 

Fig. 3.3 Square-well interaction sequence 
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Presuming no collisions with a third particle, this process will repeat and the particle 

agglomerate is forever bound.  In this limit, repeated, inelastic collisions become 

successively more grazing (due to the continual reduction of normal relative velocity 

associated with inelastic collisions), and hence a state is approached where there is no 

further loss in granular energy. Alternatively, if a departing interaction between 

particles is characterized by a normal, relative velocity which is great enough to 

overcome the cohesive well, then an escaping-cohesive interaction occurs at a 

separation distance of 2router.  At this instant, the particles experience a reduction in 

their normal, relative velocity and continue to separate.  

Although the physical picture of the interaction sequence shown in Figure 3.3 

is limited to two particles (for purposes of simplicity), the square-well description 

also allows for agglomerates of more than two particles.  Furthermore, the 

agglomerates formed via the square-well approach are dynamic in nature.  

Animations of the simulated system indicate that agglomerates continuously form, 

rearrange and break apart.  

It is worthwhile to note that the dynamics of agglomerates formed using the 

square-well potential (i.e., a “bouncing”  between physical contact and the cohesive 

well) are different than that of more elaborate models (like a Hamaker model for van 

der Waals forces), which have cohesive interactions that are non-conservative (in 

which particles “stick”  for extended periods of time).  However, the maximum 

separation distance between particles in a square-well agglomerate is small (~0.1% of 

particle radius).  Furthermore, the normal component of relative velocity is reduced 

after each inelastic collision, and hence the motion between the agglomerated 
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particles becomes more tangential in nature.  As a result, the dynamic appearance of 

the square-well agglomerates closely mimics that of more elaborate models.  Namely, 

the particles remain extremely close and appear to rotate around a common axis.  A 

mathematical description of these cohesive interactions is given below. 

 Similar to inelastic collisions, overall momentum is conserved during a 

cohesive interaction.  To solve for the post-collisional velocities, a second relation is 

necessary.  For both inelastic collisions and cohesive interactions, this relation is 

derived from an appropriate kinetic energy balance.  For inelastic collisions, kinetic 

energy is dissipated in accordance with equation 3.3. For cohesive interactions, 

however, kinetic energy can be gained, lost or stay the same depending on the type of 

cohesive interaction experienced.  In particular, (i) potential energy is converted to 

kinetic energy (resulting in kinetic energy gain) for approaching-cohesive interactions, 

(ii) kinetic energy is converted to potential energy (resulting in kinetic energy loss) 

for escaping-cohesive interactions and (iii) kinetic energy remains the same for 

capture-cohesive interactions. 

 For the case of an approaching-cohesive interaction, energy conservation 

leads to the relation 

( )2

11

4
a,ij,ijb,ij,ij vk

m

D
vk

����
⋅+=⋅     (3.6)  

where a,ijv
�

 is the relative velocity of the particles before the cohesive interaction and 

1,ijk
�

is the unit vector pointing from the center of the ith particle to the center of the jth 

particle when the approaching particles are separated by 2router.  When this relation is 
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combined with the momentum balance, the momentum impulse during an 

approaching-cohesive interaction is found as 

( ) �
�
�

�
�
�
�

�
⋅+−⋅=

2

11

4

2 a,ij,ija,ij,ijapp,coh vk
m

D
vk

m
J

����
   (3.7) 

For the departing interaction, two possibilities exist.  First, the particles can 

continue to separate.  In this case, using energy conservation, the following 

relationship is derived: 

( )
m

D
vkvk c,ij,ijd,ij,ij

42

33 −⋅−=⋅ ����
    (3.8) 

where 3,ijk
�

 is the unit vector pointing from the center of the ith particle to the center of 

the jth particle when the departing particles are separated by 2rinner and d,ijv
�

 is the 

relative velocity of the particles after escaping the square well.  Similar to the 

procedure used with approaching-cohesive interactions, equation 3.8 is combined 

with the momentum balance to derive the following relation for the impulse during an 

escaping-cohesive interaction: 

( ) �
�
�

�
�
�
�

�
−⋅+⋅=

m

D
vkvk

m
J c,ij,ijc,ij,ijesc,coh

4

2

2

33

����
   (3.9) 

However, if the value inside the square root in equation 3.8 is negative, particle 

escape from the attractive well is not possible. Instead, internal reflection from the 

wall of the square well occurs and the particles form a dynamic agglomerate.  In this 

case, the normal, relative velocity between the two particles does not change in 

magnitude, but simply changes its direction: 
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c,ij,ijb,ij,ij vkvk
����

⋅−=⋅ 33       (3.10) 

When equation 3.10 is combined with the conservation of momentum, the following 

relation is found for the momentum impulse during a capture-cohesive interaction: 

( )c,ij,ijcap,coh vkmJ
��

⋅= 3       (3.11) 

It is worth noting that the relative velocity resulting from a capture-cohesive 

interaction ( b,ijv
�

 , equation 3.10) is referred to using the same symbol that is used to 

refer to the relative velocity before an inelastic collision (equation 3.3).  This 

repetition was intended to keep the nomenclature consistent, since a capture-cohesive 

interaction will generally be followed by an inelastic collision. Moreover, the relative 

velocity between the two particles does not change until an interaction is actually 

resolved, even though the normal component of the relative velocity (between 

particle contacts) is constantly changing as the particles move.    

 In summary, equations 3.7, 3.9 and 3.11 are used in conjunction with 

equations 3.1 and 3.2 to determine the outcome of the various types of cohesive 

interactions. 

 

3.2 Initialization, Steady-State Criteria and Data Collection 

 Initial particle positions are obtained by placing the particles on a square grid 

and giving each particle a random displacement from the lattice node.  The distance 

between nodes is made as large as possible while still creating enough nodes so that 

there is at least one free node for each particle. This size of the random displacement 
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is made small enough such that particles on adjacent nodes will not overlap even after 

the displacement is made. Initial, random components of velocity in the x- and y-

direction for each particle ( i,xv , i,yv ) are obtained using a random number generator. 

These velocities are bounded such that their maximum magnitude is less than or equal 

to the shear velocity.  A mean velocity component is added to the x-velocity of each 

particle to achieve the desired shear profile in the system.  Finally, the net momentum 

in the system is set to zero in each direction by first summing the net momentum in 

both directions.  The net momentum in both directions is then divided by the total 

mass in the system and this resulting quantity is subtracted from the appropriate 

velocity component of each particle.   

Data collection does not start until each particle has experienced 2500 

collisions. After this period, all components of the collisional and kinetic stress (as 

defined in Equations 3.14-3.16 below) are collected at regular intervals, namely every 

500 collisions per particle.  The average number of particles per agglomerate and the 

average agglomerate duration (as defined in Equations 4.3-4.5, Chapter 4) are also 

collected at each interval. Once each of these calculated values does not vary by more 

than two percent over two consecutive intervals, the simulation is assumed to have 

reached a statistical steady state. Typically, simulations run for three intervals before 

a steady state is achieved. 
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3.3 Simulation Inputs 

 The parameters needed as inputs to the simulation are the cohesive well depth 

( D ), the particle radius ( innerr ), the width of the square well ( outerr ), the restitution 

coefficient ( e ), the solids area fraction (φ ), the domain length ( L ), the shear rate (γ ) 

and the material density of the particles ( sρ ).  The five dimensionless quantities that 

characterize the system are summarized in Table 3.1.  Correspondingly, L ,γ , and sρ  

are set equal to 1.0 for simplicity, while the remaining input parameters 

( D , innerr , outerr , e , andφ ) are used as independent control parameters. These five 

dimensionless parameters are varied to determine their effect on the system. All other 

system parameters can be calculated from the specified parameters, including the 

number of particles (N): 

2

2

innerr

L
N

⋅
=

π
φ

       (3.12) 

as well as the particle mass: 

sinnerrm ρπ 2⋅=        (3.13) 

 

Table 3.1 Dimensionless simulation inputs 

Input Description

L / r inner ratio of domain length to particle radius

e coefficient of restitution

φ solids area fraction

dimensionless cohesive well depth

r outer / r inner ratio of well width to particle radius

( ) sinner

*

r

D
D

ργ 52 2
=
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3.4 Simulation Outputs 

  Among the outputs calculated in the simulation are the granular temperature 

(T ) and each component of the stress tensor ( xxτ , yyτ , and xyτ ). The stress tensor in 

this system has two contributing sources: kinetic (streaming) generation and 

collisional generation. The total stress is calculated by summing the contributions 

from these two sources. 

Kinetic stress is generated by the transfer of momentum as particles move 

through the shear velocity field.  The kinetic contribution to the total stress is 

calculated according to the random velocity components of each particle [2]: 

i,x

N

i
i,x

s
)kin(xx vv

N
′′= �

=1

φρτ      (3.14) 

i,y

N

i
i,y

s
)kin(yy vv

N
′′= �

=1

φρτ       (3.15) 

i,x

N

i
i,y

s
)kin(xy vv

N
′′= �

=1

φρτ       (3.16) 

where 

i,xi,xi,x vvv +′=        (3.17) 

i,yi,yi,y vvv +′=       (3.18) 
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and i,xv  represents the x-component of the velocity, i,yv  represents the y-component 

of the velocity and the prime ( i,xv′ ) indicates the fluctuating component of the velocity 

and the overbar ( i,xv ) indicates the average component of the velocity (all for the ith 

particle).  This average velocity in the x-direction as a function of the y-position is 

obtained by performing a least squares fit. The final reported value of the kinetic 

stress is averaged over several snapshots.  Snapshots for averaging are taken after 

every collision once the initial 2500 collisions per particle have passed.  Simulations 

proceed until all components of the stress vary by less than 1 percent over a 500 

collision interval. 

The collisional contribution to the total stress arises from the exchange of 

momentum between particles during inelastic collisions and cohesive interactions.  

This quantity is calculated by summing the impulses from each interaction type 

(inelastic and cohesive) over a given time interval and then dividing by that time and 

the area of the simulation domain [2]: 
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where intn  is the total number of interactions that occurs during the data collection 

period, R is the center-to-center distance between particles, ix  and iy represent the 
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position of the ith particle, ALE is the area of the simulation domain (Lees-Edwards 

periodic domain), and dct∆ is the time over which intn  interactions occur (i.e., the data 

collection period). *J  represents the magnitude of the momentum impulse transferred 

during the given inelastic collision (Equation 3.5) or cohesive interaction (Equations 

3.7, 3.9 and 3.11).  

The granular temperature is calculated according to the equation:  

( )
N

vvvv
T

N

i
yiyixixi�

=

′′+′′
= 12

1

     (3.22) 

Finally, prior to reporting, both the stress and the granular temperature are 

non-dimensionalized as follows: 

( )22 γρ
τ

τ
inners

ij*
ij

r
=       (3.23) 

( )22 γinner

*

r

T
T =       (3.24) 

Also, several parameters that characterize the agglomerates (e.g. average number of 

agglomerates, average agglomerate duration, average number of particle per 

agglomerate) in the system are also collected.  These parameters will be explained in 

more detail in Section 4.2.2. 
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3.5 Time Advancement 

As described in Section 2.2, the computational time needed for a simulation is 

greatly affected by the collision search algorithm that is employed – event-driven or 

time-stepped.  Furthermore, the introduction of the square-well potential increases the 

required computational time by increasing the number of particle-particle interactions 

relative to the non-cohesive system.  Also, the time step must be made small enough 

to capture interactions on the length scale associated with the distance between the 

particle radius and the width of the square well. An estimate of this length scale must 

be made in order to assess which collision search algorithm will require the least 

computational time in a cohesive simulation. 

In order to obtain a practical estimate of this length scale, the van der Waals 

force between two spherical particles is considered based on the Hamaker theory: 

212H

Ar
F inner

vdW =        (3.25) 

where FvdW is the van der Waals force between two particles, H is the surface-to-

surface particle separation distance, and A is the Hamaker constant which is specific 

to the material in question. The Hamaker theory predicts that the attractive force 

between two particles will be negligible at very large separation distances, and will 

then gradually increase as the particles become closer.  To determine the separation 

distance at which this force will first have a significant effect on particle motion, the 

magnitude of the force is compared to the weight of a 20-micron particle. Typical 

particle properties are assumed, namely a density equal to 1000 kg/m3 and Hamaker 

constant equal to 10-20 J.  This analysis indicates that the van der Waals force is equal 
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to the weight of one particle when a distance of 0.056 µm separates the two 

approaching particles.  Correspondingly, the ratio of the square-well width to particle 

radius (router/rinner) must be approximately 1.001 for this case.  

Using this ratio of the square-well width to particle radius, both event-driven 

and time-stepped algorithms were implemented in order to assess the most efficient 

method of implementing the cohesive simulation.  While the time-stepped algorithm 

generally runs faster for systems with a relatively high radius ratio (router/rinner = 1.1), 

the event-driven algorithm is much more efficient as the radius ratio approaches one.  

At a typical radius ratio associated with the van der Waals forces (router/rinner = 1.001), 

simulations using the event-driven algorithm finish approximately ten times faster 

than simulations using the time-stepped algorithm. For these reasons, the event-driven 

search algorithm is used to collect all the results shown in Chapter 4. 
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Chapter 4. Granular Flow Results 

 The parameter space investigated includes solids fractions (φ ) ranging from 

0.1 to 0.5, coefficients of restitution (e) from 0.8 to 0.9, well width to particle radius 

ratios (router/rinner) from 1.1 to 1.0001 and dimensionless well depths (D*) ranging 

from 0 to 15.  The ratio of the domain length to the particle radius (L/rinner) is kept 

constant at 120 for all simulations, as this was found to be large enough to ensure that 

the results are domain-size independent. 

Before simulations are run with a large number of particles, a series of two-

particle simulations are performed.  The results of these simulations are verified with 

hand calculations to make sure that the inelastic collisions and cohesive interactions 

were being resolved correctly.  These simulations are also used to evaluate a 

simplified, analytical description of cohesive interactions (as detailed in the following 

section).  After considering the two-particle case, many-particle simulations are run 

with particles ranging in number from 458 to 2292.  The results are characterized 

using snapshots of particle positions as well as simulation data for stress components, 

granular temperature, and agglomerate properties.  The effectiveness of the square-

well is then assessed by qualitatively comparing these results with experimental 

observations. 

 

4.1 Two-Particle System 

 As a first step, simulations are performed for a two-particle system. After 

cohesive and collisional interactions occurred, particle positions and velocities were 
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checked against analytical solutions to ensure that all interactions are being resolved 

correctly.  As depicted in Figure 4.1, the particles are initially given horizontal, 

approaching trajectories. The particle centers are offset in the vertical direction by an 

amountδ , which is less than the particle diameter (2 innerr ) to ensure that a particle-

particle interaction will occur. The coefficient of restitution is set at 0.8 and the 

dimensionless well depth is 5.0 for all simulations.  The interactions were checked by 

hand for the cases of agglomeration and escape involving two particles, and breakup 

of a 2-particle agglomerate by a third particle. 

For the 2-particle 

simulations in which an 

agglomerate does not result (i.e., 

escaping-cohesive interaction), an 

effective coefficient of restitution 

(eeff) is calculated based on  the 

approaching and departing normal, 

relative velocities: 

a,ij,ij

d,ij,ij
eff

vk

vk
e ��

��

⋅

⋅
−=

1

3       (4.1) 

Note that the approaching normal, relative velocity ( a,ij,ij vk ⋅1

�
) and departing normal, 

relative velocity ( d,ij,ij vk
��

⋅3 ) are evaluated when the center-to-center distance of the 

two particles is equal to 2router, unlike the actual restitution coefficient which is based 

on a separation distance of 2rinner.  This difference arises since eeff incorporates both 

Fig. 4.1 Geometry of two-particle simulations 

δ



 44 

cohesive interactions and inelastic collisions, whereas e only characterizes the 

inelastic collision. 

At the limit of router → rinner, an analytical estimate of eeff can be made for 

interaction sequences between two particles that escape the square well. This 

derivation is detailed in Appendix A.  For this limiting case, the positions of two 

particles essentially remain unchanged throughout the entire interaction sequence 

(approaching cohesive interaction→inelastic collision→escaping cohesive 

interaction). Hence, the effective restitution coefficient as router/rinner approaches one 

is: 

( )
( )2

1

2
2 14

a,ij,ij

rr,eff

vkm

De
ee

innerouter ��
⋅

−+==      (4.2) 

An examination of this equation reveals that the effective restitution coefficient at the 

limit of router=rinner is lower than the actual restitution coefficient (e).  In other words, 

the attractive square well serves to increase the energy dissipation relative to that of a 

non-cohesive system. 

Figure 4.2 shows the results of several 2-particle simulations for the case of 

non-agglomerated particles.  The results indicate that 
innerouter rr,effe =  is very close to the 

simulation value (eeff) for a router/rinner of 1.0001 (Figure 4.2b).  However, as router/rinner 

increases to 1.1 (Figure 4.2a), the assumption of router/rinner ~ 1 worsens and 

nneriouter rr,effe = does not show good agreement with the simulated value.  

Based on the results of the 2-particle simulations, the use of the effective 

restitution coefficient in place of the more complete square-well approach is not valid 
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outside of the limits in which it was developed.  Because these limits are fairly 

restrictive, namely 2-particle, non-agglomerating interactions with router/rinner ~ 1, an 

approximation to the square-well model based on the use of an effective restitution 

coefficient does not appear to be a promising approach for more general, cohesive 

systems (systems with particle agglomeration, multi-particle interactions, etc.).  

 

 

Fig. 4.2 Calculated (equation 4.2) and simulated values of the effective coefficient of restitution as 
a function of the vertical particle offset (δ) in two-particle simulations for e=0.8 and (a)  router/rinner 
= 1.1 and, (b) router/rinner =1.0001.   
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4.2 Many-Particle System 

4.2.1 Flow Regimes  

An important observation from the many-particle simulation results is that 

cohesive forces lead to the development of two markedly different flow regimes.  

Systems characterized by relatively large cohesive forces ( 15≥*D ) tend to form a 

single, large agglomerate that includes most of the particles in the domain.  For 

systems with relatively small cohesive forces ( 15<*D ), the particles remain fairly 

evenly distributed throughout the domain, forming mostly 2-particle agglomerates 

(though agglomerates of more than two particles also exist).  The difference between 

these two flow regimes is shown in the simulation snapshots of particle 

configurations in Figure 4.3.  Systems in the top and bottom row are characterized by 

D*=25 and 30, respectively.  As expected, the transition between mild cohesion 

( 30.≤φ ) and strong-cohesion ( 40.≥φ ) regimes for D* = 25 occurs at a higher solids 

fraction than for the system with D* = 30 ( 30.≥φ ).  Furthermore, the transition 

between the mild-cohesion and strong-cohesion regimes is observed to be fairly 

abrupt. Specifically, the middle row of Figure 5 also contains snapshots for D* = 25, 

but in a much smaller range of φ .  Even within this narrow range, no smooth 

transition is observed.  Reproducible stress values cannot be obtained for simulations 

operating in the strong cohesion regime because the non-uniform particle distribution 

leads to very poor results when trying to fit the profile of the average velocity.  This 
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erratic average velocity leads to values of the kinetic stress that are inconsistent from 

run to run for the same set of operating parameters. 

 

The abrupt transition observed between the mild-cohesion and strong-

cohesion regimes is reminiscent of the transition observed between Geldart Type C 

and Type A powders (as described in Section 1.3.2.1). Although the focus of the 

current work is on a granular system and the Geldart classification system is for a 

gas-solid system, similarities do exist between the systems.  Both systems involve 

Fig.  4.3  Snapshots of particle configuration showing transition from mild cohesion to strong 
cohesion regime. A dimensionless well depth of 25 (top row) shows the transition between solids 
fractions (φ) of 0.3 and 0.4, while a well depth of 30 (bottom row) shows the transition between 
solids fractions of 0.2 and 0.3.   Middle row illustrates abrupt nature of transition over very narrow 
ranges of solids fraction. 

φφφφ = 0.2φφφφ = 0.2 φφφφ = 0.3φφφφ = 0.3 φφφφ = 0.4φφφφ = 0.4

φφφφ = 0.37φφφφ = 0.37 φφφφ = 0.375φφφφ = 0.375 φφφφ = 0.38φφφφ = 0.38

φφφφ = 0.2φφφφ = 0.2 φφφφ = 0.3φφφφ = 0.3 φφφφ = 0.4φφφφ = 0.4

25=*D

25=*D

30=*D
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relatively massive particles, which engage in particle-particle collisions that are 

dissipative in nature.  Whether or not such similarities are responsible for the abrupt 

regime transition observed in both types of cohesive systems, however, remains 

uncertain and is beyond the scope of the current effort.  The ability of the square-well 

model to predict Geldart transitions in a simulation of a fluidized system will be 

described in Chapter 7. 

 

4.2.2 Mild-Cohesion Regime 

 Within the mild-cohesion regime, the simulations achieve a statistical steady-

state with computational times ranging from 4 minutes to 48 hours on a Pentium 4 

processor. All simulations are characterized by a domain length to particle radius 

ratio (L/rinner) equal to 120.  The constraints on input parameters needed to stay in the 

mild cohesion regime are somewhat limiting. Specifically, the mild-cohesion 

parameter space is more restrictive at lower restitution coefficients (e ~ 0.8) and 

radius ratios closer to one (router/rinner ~ 1.00001). With e = 0.9 and a router/rinner = 

1.001, however, many noticeable trends were observed while varying φ  from 0.1 to 

0.5 and *D  from 0 to 15.  Additional features were observed by maintaining D* = 10 

and varying router/rinner in the range of 1.1-1.0001 and φ  in the range of 0.1 to 0.5. 

As mentioned previously, the agglomerates formed in the mild-cohesion 

regime are typically composed of only a few particles (Figure 4.3) and are very 

dynamic in nature (i.e., agglomerates continually form, rearrange and break up). In 

order to characterize these agglomerates in a quantitative manner, several quantities 
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were monitored throughout the simulation, including the agglomerate duration and 

size. The agglomerate duration ( aggt∆ ) is a measure of the average amount of time 

that a given particle retains at least one agglomerate partner after first being captured, 

namely:  

aggescagg ttt −=∆       (4.3) 

where aggt is the system time at which a given particle first enters into an agglomerate 

(this agglomerate may include more than two particles) and esct  is the system time at 

which that particle is no longer agglomerated with any other particles.  This quantity 

is averaged over all occurrences of particles that become agglomerated and later 

escape all agglomerated partners:   
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where nesc is the number of occurrences of a particle becoming agglomerated and then 

later escaping from all agglomerate partners. The average number of particles per 

agglomerate is calculated by counting the number of particles in each agglomerate at 

a given instant, averaging that number over all agglomerates in that snapshot, and 

then averaging that value over several snapshots: 
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where k,iP  is the number of particles in a given agglomerate at the kth snapshot, nagg,k 

is the total number of agglomerates at the kth snapshot, kt∆  is the time step associated 

with the kth snapshot (because the event-driven simulation proceeds from collision to 

collision, the time step continually changes) and ns,agg is the number of snapshots for 

averaging of agglomerate properties.  According to this equation, snapshots 

associated with longer times between interactions are weighted more heavily than 

those with smaller times between interactions.  If each snapshot was not weighted by 

its associated time step, then the averaging process would tend to exaggerate the level 

of agglomeration in the system since agglomeration leads to shorter times between 

particle interactions and thus a higher frequency of snapshots.  Approximately two 

thousand snapshots are used in the averaging process for all agglomerate properties.  

Figure 4.4 shows the variation of agglomerate duration and number of particle 

per agglomerate at e = 0.9, router / rinner =1.001 and D* = 0-15. As illustrated in Figure 

4.4a, as the strength of the cohesive force ( *D ) is increased, a given particle has a 

reduced chance of escaping from any particles with which it is agglomerated, thereby 

leading to a longer average agglomerate duration.  As expected, Figure 4.4b shows 

that the average number of particles per agglomerate increases as the strength of 

cohesive forces (D*) is increased. Also evident from these plots is that the average 

agglomerated time decreases as the solids fraction is increased, but the average 

number of particles per agglomerate increases as the solids fraction is increased.  An 

explanation for this observation is linked to the increasing number of particles per 

area as the solids fraction is increased.  This increase leads to more particles in each 

agglomerate.  However, the increased number of particles will also lead to more 
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interaction between agglomerates and therefore a higher frequency of breakup.  Thus, 

while higher solids fractions will lead to the average agglomerate containing more 

particles, the involved particles will get reshuffled between the agglomerated and 

unagglomerated state at a higher frequency.  

 

 Figure 4.5 displays the effect of router/rinner on agglomerate characteristics. All 

data in Figure 4.5 was obtained using a dimensionless well depth of 10 and a 

restitution coefficient of 0.9.  Increasing router/rinner essentially makes every particle a 

larger target.  Correspondingly, additional cohesive interactions will occur.  Such 

glancing collisions will increase the rate of agglomeration and have a negligible effect 

on deagglomeration.  Hence, the average number of particles per agglomerate will 

increase with router/rinner (Figure 4.5b).  In addition, any agglomerated particle will 

Fig. 4.4  Average agglomerate duration ( aggt∆ ) and average number of particles per agglomerate 

( P ) at varying cohesive well depths ( *D ) with  router/rinner=1.001 and e=0.9. 
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retain at least one agglomerate partner for a longer period of time (on average) as 

router/rinner increases (Figure 4.5a). 

 

Figure 4.6 displays the effect of cohesive forces on the xx-component of the 

normal stress tensor ( *
xxτ ) as a function of the solids fraction for router/rinner = 1.001 

and e = 0.9.  As seen in Figure 4.6, the stress generally decreases as the magnitude of 

the cohesive forces (D*) increases.  Similar results are obtained for the yy-component 

of normal stress.  As seen in the graph, the largest deviations from the zero-cohesion 

( 0=*D ) case are found for φ  > 0.3 (collisional-flow regime), in which particle-

particle interactions are the dominant mechanism for momentum transfer.  Because 

the cohesive forces are only significant when particles are in close proximity to one 

Fig. 4.5 The average agglomerate duration ( aggt∆ ) and average number of particle per 

agglomerate ( P )  for varying  ratio of the well width to inner radius ( innerouter r/r )with D*=10 

and e=0.9. 
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another, no significant changes to stress occur at φ  < 0.3, in which the streaming 

(kinetic) mechanism is responsible for the majority of momentum transfer. 

 

In order to further investigate the observed trend of decreasing normal stress 

with increasing cohesive forces, the four contributions to *
xxτ  are examined on an 

individual basis.  In particular, Figure 4.7 shows the portion of *
xxτ  that is due to 

approaching-cohesive interactions (Figure 4.7a), escaping-cohesive interactions 

(Figure 4.7b), inelastic collisions (Figure 4.7c) and capture-cohesive interactions 

(Figure 4.7d) for the same set of conditions portrayed in Figure 4.6.  By definition 

(equations 3.7, 3.9 and 3.11), the momentum impulse during cohesive interactions is 

always negative. Thus, the normal component of the stress coming from these 

interactions will always be negative as is consistent with subplots (a), (b), and (d).  

Furthermore, these plots indicate that as D* increases, the stress contributions from 

cohesive interactions become more negative.  The contribution to *
xxτ  arising from 

inelastic collisions, however, increases as D* increases (Figure 4.7d), which is 

opposite to the behavior of the total stress tensor (Figure 4.6).  A comparison of the 

magnitudes of the four contributions to the total stress tensor (Figure 4.7) indicates 

Fig. 4.6  Normal stress (xx-component) for varying cohesive well depth (D*) with router/rinner=1.001 
and e=0.9. 
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that inelastic collisions and capture-cohesive interactions have the largest influence 

on the behavior on the total stress.  This observation can be traced to the frequency of 

these two interactions (not plotted here).  Namely, both inelastic collisions and 

capture-cohesive interactions occur much more often due to agglomeration.  Hence, 

the stress from inelastic collisions increases as cohesive forces are added to the 

system, the stress from capture cohesive interactions decreases to a larger degree and 

the net effect is a decrease in the total stress, as is displayed in Figure 4.8. The 

additional decrease in total stress arises from the additional approaching- and 

escaping-cohesive interactions which account for roughly 20% of the net decrease 

(Figures 4.7a and 4.7b).  

Fig.  4.7 Normal collisional stress (xx-component ) coming from(a) approaching-cohesive 

interactions,(b) escaping-cohesive interactions,(c) inelastic collisions, and (d) capture-cohesive 

interactions for router/rinner=1.001 and e=0.9. 
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 Similar effects are seen when router/rinner is decreased as shown in Figure 4.9 

for a D* = 10 and e = 0.9.  In particular, the xx- and yy- components (not shown) of 

the normal stress decrease as the radius ratio approaches unity.  Further investigation 

shows that this decrease can again be traced to the increased frequency of inelastic 

collisions and capture-cohesive interactions, which is analogous to the behavior 

observed when D* is increased.  However, in this case the increased number of 

inelastic collisions and capture-cohesive interactions is not due to the formation of 

more agglomerates, but rather due to the decreased distance between rinner and router.  

This shortened distance allows more inelastic collisions and capture-cohesive 

interactions to occur in a shorter time per agglomerate, despite the observation that 

the agglomerates have a shorter average lifetime (Figure 4.5a).  

Fig. 4.8  Sum of the portion of normal stress (xx-component) coming from inelastic collisions and 
capture cohesive interactions for outer/rinner=1.001 and e=0.9 . 
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 Similar to the normal stress, the shear stress component ( *
xyτ− ) exhibits a 

slight decrease in the collisional regime (high φ ) as cohesive forces become stronger,  

as shown in Figure 4.10. These results were obtained at the same values of router/rinner  

and e as the data in Figures 4.6 - 4.8.  To investigate the source of these changes, the 

collisional component of shear stress is again divided into the contributions from each 

type of interaction, as depicted in Figure 4.11.  As with the normal stress, the 

approaching- and escaping-cohesive interactions lead to a decrease in *
xyτ−  with any 

increase in D*, though this is only a small part of the overall change in the total shear 

stress.  Figure 4.11d reveals that the shear stress coming from capture-cohesive 

interactions is also relatively insignificant.  The largest contribution to the change in 

Fig. 4.9 Normal stress (xx-component) with varying values of well width to inner radius ratio 
(router / rinner) for D* =10 and e = 0.9. 
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Fig. 4.10  Shear stress (-xy-component) at varying cohesive well depths (D*) for router/rinner=1.001 
and e=0.9. 
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the total shear stress comes from inelastic collisions.  This portion of the stress 

becomes smaller in magnitude as D* increases as is illustrated in Figure 4.10c. This 

effect is the opposite of that seen with the inelastic contribution to the normal stress 

(Figure 4.7c). 

 

A possible physical explanation for this phenomenon is related to the direction 

of the imposed shear in the system, as shown in Figure 4.12.  First, consider a 

cohesion-free system. If the particles do not have any random velocity and only move 

with the average velocity imposed by the shear, collisions will involve a particle in a 

part of the domain with a higher average velocity (particle 1 in Figure 4.12a) 

colliding with a particle in an adjacent part of the domain with a slower average 

velocity (particle 2 in Figure 4.12a). Particles that collide in this manner serve to 

Fig. 4.11  Shear stress (-xy-component) from (a) approaching-cohesive interactions, (b) escaping-
cohesive interactions,(c) inelastic collisions, and(d) capture-cohesive interactions for 
router/rinner=1.001 and e=0.9. 
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increase the magnitude of *
xyτ−  (transfer of positive momentum in a negative direction 

or negative momentum in a positive direction, see equation 3.21).  Although the 

particles under consideration have both a random and a mean component of velocity, 

the collision orientation associated with the imposed shear (Figure 4.12a) will still be 

favored.  Now consider a system with cohesive forces. Simulation data has shown 

that the introduction of cohesive forces leads to a decrease in the percentage of 

collisions associated with shear orientation (Figure 4.12a). Figure 4.12b illustrates 

how agglomeration can lead to a faster moving particle continuing to contact a 

particle in an adjacent, slower-moving part of the domain after initial contact.  

Simulation data indicates that more than half of the initial, inelastic collisions 

between two non-agglomerated particles are characterized by the shear orientation 

(Figure 4.12a). However, when considering agglomerated particles, a majority of the 

collisions are characterized by the orientation represented in Figure 4.12b. Collisions 

in the latter orientation result in a transfer of positive x-momentum in the positive y-

direction, therefore decreasing the magnitude of *
xyτ− .  When averaged over several 

thousand collisions, these additional collisions associated with agglomeration lead to 

a slight decrease in *
xyτ− . 
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 The trend of decreasing normal stress with increasing cohesive forces in the 

granular system studied here can be compared to trends observed in molecular gases  

(where molecular gases undergo elastic collisions). One method used to describe such 

systems is via a collection of hard spheres (which gives rise to repulsion between 

molecules) with a square-well potential (which gives rise to attraction between 

molecules).  When the square-well potential is added to the hard-sphere description, 

the resulting attractive forces contribute negatively to the second virial coefficient [1].  

The corresponding decrease in the second virial coefficient leads to a pressure that is 

lower than that associated with hard spheres only.  The decrease in pressure is 

consistent with the simulation results shown here (Figure 4.5) in which the addition of 

a square well leads to a reduction in the normal components of the stress tensor (i.e. 

pressure). 

From an experimental standpoint, Gidaspow and Huilin [2] have made related 

observations with electrostatically-charged FCC particles in a gas-fluidized bed.  

They found that at low volume fractions, the granular temperature, normal stress and 

Fig. 4.12  Diagram showing dominant (a) collision type in shear flow (b) with possible 
agglomerated collision.   
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solids volume fraction obeyed a simple kinetic theory equation of state.  However at 

higher solids volume fractions (when inter-particle cohesion is more significant), the 

kinetic-theory relation overpredicted the normal stress in the system.  After making a 

correction to account for the attractive electrostatic forces, the relation agreed with 

the experimental data.  This experimentally-observed tendency of cohesive forces to 

decrease the normal stress component is in qualitative agreement with the results 

shown in this work. 

 

4.3 Summary of Granular Flow Results 

 Cohesive forces were introduced into a discrete-element simulation for rapid, 

granular shear flows using a square-well potential.  An effective coefficient of 

restitution was derived for a 2-particle system in the limit of router/rinner → 1.  

Comparisons with simulations indicate that the range of validity of the effective 

restitution coefficient is narrow.  Hence, this approach does not appear to be a 

practical simplification of the more complete square-well potential.  

For simulations involving a large number of particles, two different flow 

regimes are present.  In the strong-cohesion regime, particles form a single, large 

agglomerate.  In the mild-cohesion regime, particles form agglomerates that 

continuously form, rearrange, and disperse.  Cohesive forces are found to have little 

effect on the stress at low solids fractions (kinetic regime), but decrease the total 

stress at higher solids fractions (collisional regime). This decrease in stress becomes 

more significant as the strength of the cohesive forces (D*) is increased. These results 

are in qualitative agreement with the results of fluidized systems and molecular 
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systems (though clear differences do exist between these two pairs of systems, 

namely the presence of a fluid phase and perfectly elastic collisions, respectively).  

 The simulation results indicate that the square-well potential appears to be a 

viable method for incorporating cohesive forces into a description of rapid granular 

flow.  In particular, the impulsive, instantaneous nature of the corresponding cohesive 

forces makes it a candidate for incorporation into kinetic-theory descriptions (since 

current theories are based on the assumption of binary, instantaneous particle 

collisions).  To apply this model to practical systems, however, a mapping between 

square-well parameters and physical (measurable) quantities is needed.  Although this 

analysis is not performed in relation to the granular flow simulation, such an effort is 

made in the context of the fluidized bed simulation, as is described in Chapter 7. 
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Chapter 5. Literature Review of Models for Fluidized Flow Systems 

  Relative to granular systems, the development of a model for fluidized flow 

systems is more complex due to the two-way coupling between the two phases.  In 

particular, the fluid phase is highly dependent on the state of the solid phase, and vice 

versa.  For example, the portion of the system occupied by each phase is constantly 

changing as the particles move within the fluid.  Likewise, the solid phase will be 

affected by pressure gradients in the fluid phase, and both phases will experience an 

equal and opposite drag force.  Hence, a model of the system must take into account 

not only the mechanisms within in each phase, but also the mechanisms that couple 

these two phases. 

 One approach to coupling this two-phase system is to allow the fluid phase to 

move through a domain with boundaries defined by the changing positions of the 

particles (i.e., the domain occupied by the fluid has moving boundaries).  The fluid 

phase equations would then be solved at every point occupied by the fluid and 

individual force balances would determine the motion of the particles.  This direct 

numerical simulation of both phases has extremely high computational requirements, 

and is thus limited to systems containing only a few particles. At the other end of the 

spectrum, another possibility is to consider the effect of the particles on the fluid (and 

the fluid on the particles) uniform throughout the domain. However, spatial variations 

in both phases are present (e.g., bubbles in a fluidized bed), so this approach is not 

appropriate.  A common ground between these two approaches is to use a technique 

based on local averaging (see, for example, [1]). 
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To describe the fluid phase via local averaging, an assumption is made that the 

macroscopic variation of the system parameters is on a length scale that is much 

larger than the particle spacing yet much smaller than the system dimensions.  A 

weighting function is used to transform point values into volume-averaged values that 

are defined in terms of volume occupied by both phases.  For an isothermal, non-

reacting, incompressible system, this approach leads to the following expressions for 

the fluid-phase mass balance and momentum balance:   
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where gε is the volume fraction of the fluid phase, gρ  is the fluid density, gv
�

is the 

fluid velocity, gS is the fluid-phase stress tensor, g
�

is the acceleration due to gravity 

and gsI
�

 is the rate of momentum transfer between the fluid and solid phase per unit 

volume.   

In addition to the locally-averaged fluid phase equations, a second set of 

equations is required to describe the solid phase.  These equations can be developed 

using either a discrete-particle (Lagrangian) or continuum (Eulerian) approach. Both 

of these approaches start with the equation of motion for a single particle:  

i
i

s F
dt

vd
v

�
�

=ρ        (5.3) 

where v is the single particle volume, iv
�

is the single particle velocity and iF
�

is the 

sum of all forces acting on the particle (e.g.,  gravity, fluid-solid drag force, particle-

particle contact force).   For a discrete-particle approach, equation 5.3 is integrated 
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numerically for each particle.  Local average quantities (e.g. average solid velocity 

and solids volume fraction) are based on a computational grid.  The properties of all 

particles within a given grid cell are averaged in order to obtain locally-averaged 

properties that can be interfaced with the fluid-phase continuum equations.  The 

combination of a locally-averaged fluid-phase equations with a numerical solution of 

the equations of motion for each individual particle is referred to as and Eulerian-

Lagrangian technique (since the fluid is treated in a continuum manner and the 

particles are treated in a discrete manner).  

The solid phase can also be described using a continuum approach.  

Application of local volume-averaging to the equation of motion for a single particle 

leads to the following expression for the solid-phase momentum balance: 
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where sε is the solids volume fraction, sv
�

is the locally-averaged solid velocity, sS is the 

solid-phase stress tensor and sρ is the solid density.  This expression can be solved 

with equation 5.2 along with the following continuity relation: 

1=+ gs εε        (5.5) 

to obtain a complete description of the two-phase system.  The combination of a 

locally averaged equation for the solid phase with a locally-averaged equation for the 

fluid phase is referred to as an Eulerian-Eulerian approach (since both phases are 

treated as a continuum). 

In general, the Eulerian-Eulerian approach is computationally more efficient 

and therefore can be applied to systems with a larger number of particles than the 
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Eulerian-Lagrangian approach, which is limited to approximately 100,000 particles.  

However, incorporation of complex particle physics (e.g., cohesion) is a more 

difficult task with Eulerian-Eulerian models.  In particular, volume-averaging of the 

particle momentum balance gives rise to the solid-phase stress tensor (Equation 5.5), 

which requires a constitutive relation.  The impact of cohesion on such a continuum 

quantity is more difficult to model than its incorporation on a particle-particle level 

(as is necessary for the Eulerian-Lagrangian approach).  The next few sections will 

discuss some of the details of these two simulation techniques and review some 

previous efforts in each area. 

 

5.1 Eulerian-Eulerian Models 

As mentioned above, a fully specified set of equations for the solid phase 

require a constitutive model for the solid phase stress tensor ( sS ).  Such closures have 

been pursued at various levels of complexity for roughly the last four decades.  Early 

efforts employed semi-empirical methods to determine the solids viscosity (see, for 

example, [2]). The application of the kinetic theory of gases to solids allows for a 

more fundamental description of the solid-phase stress terms (see, for example, [3]). 

Sinclair and Jackson [4] were the first to apply this kinetic-theory approach to an 

Eulerian-Eulerian model of a gas-solid system. 

The focus of many subsequent Eulerian-Eulerian efforts has been to 

incorporate improved constitutive relations for the solid phase.  A detailed review of 

these advances for kinetic-theory relations is given in reviews by Campbell [5] and 
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Gold Hirsch [6].  For a thorough review of  the associated Eulerian-Eulerian models, 

the reader is referred to Sinclair [7], Enwald [8], and van Wachem [9].    

 

5.2 Eulerian-Lagrangian Models 

In order to model the particle phase in Eulerian-Lagrangian simulations, 

previous efforts have used both soft-sphere and hard-sphere techniques.  As described 

in Section 2.1, soft-sphere models allow for the inclusion of more elaborate contact 

models, while hard-sphere models are generally more computationally efficient.   

One of the first efforts to develop an Eulerian-Lagrangian fluidized bed 

simulation was made by Tsuji, et al. [10].   This effort used a soft-sphere, discrete-

particle treatment similar to what had been developed by Cundall and Strack [11], and 

combined it with an Eulerian model for the gas flow. This simulation was used to 

study bubble flow and the results were shown to compare reasonably well with 

laboratory experiments.  Subsequently the soft-sphere method has been used to study 

a wide variety of systems.  Some examples of topics that have been studied using the 

soft-sphere method include bubble formation [12], binary systems [13], mixing [14], 

and cohesive systems [15-18], although this list is not comprehensive.   

A noted drawback of the soft-sphere approach is that the particles are often 

made artificially soft in order to keep the simulation stable [19].  Nonetheless, many 

efforts have shown that the artificially soft nature of particles in soft-sphere models 

does not affect the overall particle flow [12, 18, 20, 21].  More detail on this issue is 

presented in Chapter 6.   
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Xu and Yu [19, 22] developed a model that utilized a time-stepped algorithm, 

however for each particle overlap the simulation is reversed so that the particles 

“back-up” to point of incipient contact.  The repulsive force was still calculated using 

a soft-sphere model, but the maximum overlap was limited.  This “predictor-

corrector” method was used to produce realistic fluidized bed snapshots and pressure 

drop data. 

An alternative to the soft-sphere approach is the application of a hard-sphere 

technique for the simulation of gas-solid systems.  This combination was first utilized 

by Hoomans et al. [23].  In this system, gas-particle interactions are implemented 

followed by several collisions which are processed one (instantaneous) collision at a 

time.  Some examples of systems that have been studied using this approach include 

binary systems [24], bubbling [25, 26], clustering [27, 28] and high pressure 

fluidization [29], as well as specific applications such as coal combustion [30] and 

spray granulation [31] although this list is not comprehensive. 

The enduring nature of particle contacts incorporated into the soft-sphere 

approach is an important consideration for systems with cohesive interactions.  While 

impulsive cohesion models such as the square-well model can be incorporated into a 

hard-sphere approach, most cohesion models are defined as a continuous function of 

the particle separation distance.  Hence, an event-driven algorithm would not be 

appropriate.  As will be described in the next section, all previous attempts to 

incorporate cohesion into an Eulerian-Lagrangian fluidized bed simulation have used 

the soft-sphere approach.  
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5.3 Gas-Solid Models That Incorporate Cohesion 

 Despite the prevalence of cohesive forces in fluidized beds, efforts to 

implement cohesion into models of fluidized beds have been fairly limited.  With 

regard to Eulerian-Eulerian models, no efforts have been documented to incorporate a 

model for cohesive effects into the governing equations. Mckeen and Pugsley [32] 

developed a two-fluid model for the fluidization of cohesive fluid catalytic cracking 

particles, however cohesion was accounted for by increasing the effective particle 

diameter in the drag relation.  This effort did not implement a true cohesion model 

defined on a particle-to-particle basis. Efforts to incorporate cohesion into Eulerian-

Lagrangian models are more numerous.  Mikami et al. [18]  incorporated a liquid-

bridging model into a fluidized bed simulation. This effort produced pressure data 

illustrating an increase in the minimum fluidization velocity for wet particles relative 

to a dry system.  The soft-sphere model developed by Mikami et al. has subsequently 

been extended by several investigators.  Kuwagi et al. [33] applied a sintering model 

and studied its effects on the formation of dead zones in the fluidized bed.  They also 

characterized the formation of agglomerates due to sintering.  Rhodes and Wang [15] 

used the same fluidized bed model developed by Mikami et al., but incorporated a 

simpler cohesion model.  Instead of the liquid-bridging model, they devised a 

cohesion model in which cohesive forces were only implemented when the particles 

are in physical contact.  The magnitude of the cohesive force is set to a constant and 

equal to an integer multiple of the particle weight.  In subsequent efforts, they 

observed that the transition from Geldart type B to type A behavior occurs at a 

cohesive force to weight ratio of approximately 1[16].  They have also found that the 
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transition form Geldart Type A behavior to Geldart Type C behavior occurred at a 

force ratio of approximately 47 [17].  More recently, Wang and Rhodes [34] 

developed new parameters to quantify the flowability of the fluidized bed.  Using 

parameters such as the particle mobility and the average particle speed, they defined 

quantitative criteria for the transition from Geldart type A to type C particles.  

Unlike the previous efforts which focus on liquid-bridging and general 

cohesion models, Xu et al. [35] implemented a model for van der Waals forces into a 

fluidized bed simulation.  The results of this effort show the formation of static force 

chains within the fluidized bed.  Kobayashi et al. [36] incorporated an adhesive force 

model into their simulation.   The results from this effort indicate that the adhesion 

only affects the minimum fluidization curve for decreasing gas velocities, while the 

adhesive force has no effect for increasing gas velocities.  Most recently, Ye et al. [37] 

incorporated van der Waals forces into a soft-sphere discrete particle fluidized bed 

model using the Hamaker theory.  They observed the formation of channels 

reminiscent of Geldart type C behavior for high levels of cohesion.  They also show 

that the minimum fluidization velocity was insensitive to changes in the level of 

cohesion.  This finding is counter to findings of efforts that used liquid binders to 

apply cohesion in an experimental fluidized bed [38-41].  However, this discrepancy 

could be due the differences in liquid bridging forces and van der Waals forces. Ye et 

al. do not specify if their measurements were made using increasing or decreasing gas 

velocity (the relevance of which will be addressed in Section 7.2.3). 

 These previous efforts use various models for cohesion in fluidized-bed 

systems, and have produced results that agree with many experimental observations. 
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However, none of the cohesion models used in the aforementioned efforts involves 

impulsive interactions, as is needed for incorporation of cohesion into continuum 

(kinetic-theory) models.  In the current effort, cohesion is incorporated using the 

square-well potential, which treats cohesion as an instantaneous event.  For purposes 

of comparison, cohesive forces are also implemented using the more complex 

Hamaker model for van der Waals forces.  A comparison of the results obtained with 

these two cohesion models will indicate the effectiveness of the simpler, square-well 

model relative to the more elaborate Hamaker model.   
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Chapter 6. Fluidized Bed Simulation Description 

 The MFIX (Multiphase Flow with Interphase eXchanges) program developed 

at the Department of Energy National Energy Technology Laboratory (DOE NETL) 

was used as a framework to model the gas-fluid system in this work (www.mfix.org).  

The MFIX software was originally designed to model multiphase systems in an 

Eulerian-Eulerian framework, in which the fluid phase and solid phase(s) are treated 

as interpenetrating continua and solved via a finite-volume technique. 

Recently, the capabilities of MFIX 

have been extended such that Eulerian-

Lagrangian models are also included, in 

which the solid phase(s) is described using a 

discrete-particle model [1].  As part of this 

project, the discrete-particle simulation has 

been modified to include cohesive 

interactions.   

The next few sections include a 

description of the details of the fluid-phase 

simulation, solid-phase simulation, cohesive 

models, and the methods used to verify and 

validate the resulting cohesive fluidized bed simulation.  The system being simulated 

is a two-dimensional fluidized bed of monodisperse particles as shown in Figure 6.1.   

 

 

Fig. 6.1 Fluidized bed simulation domain. 
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6.1 Gas-Phase Model  

6.1.1 Governing Equations 

 The fluid phase is modeled by solving a locally-averaged mass and 

momentum balance.  The continuity equation is given by: 

( ) ( ) 0=⋅∇+
∂
∂

ggggg v
t

�ρερε      (6.1) 

where gε is the void fraction gρ  is the gas density and gv
�

is the gas velocity [2].  The 

first term in equation 6.1 represents the accumulation of mass per unit volume and the 

second term represents the convective flux of mass per unit volume. The momentum 

balance is given by 

( ) ( ) gsgggggggggg IgSvvv
t

����� −+⋅∇=⋅∇+
∂
∂ ρερερε    (6.2) 

where gS is the gas-phase stress tensor, g
�

is the acceleration due to gravity, and gsI
�

 is 

the rate of momentum transfer between the gas and solid phase per unit volume.  On 

the left-hand side of equation 6.2, the first term refers to the rate of increase of 

momentum per unit volume and the second term refers to the rate of momentum gain 

by convection per unit volume.  On the right-hand side, the first term describes the 

rate of momentum transfer by shear and normal stress components per unit volume.  

The second term incorporates the net gravitational force on the fluid per unit volume.  

The last term on the right side represents the interaction force between the fluid and 

solid phases per unit volume [2, 3]. 

 The gas-solid momentum transfer is described by: 

( )gsgsgsgs vvFPI
���

−−∇−= ε      (6.3) 
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where gP is the gas-phase pressure, sε  is the solids volume fraction and sv
�

is the 

average solids velocity.  The calculation of the average solids velocity will be 

discussed in more detail in Section 6.2.   The drag coefficient, gsF , is determined 

using the expression developed by Syamlal and O’Brien [4]: 

gsDs

pt

ggs
gs vvC

dV
F

�� −=
24

3 ρεε
     (6.4) 

where sε  is the solids volume fraction and pd is the particle diameter.  The other 

undefined quantity in equation 6.3 is the single-sphere drag coefficient, DsC .  For this 

quantity, MFIX uses the formula given by Dalla Valle [5]: 

2

84630 �
�

�

�

�
�

�

�
+=

Re

V
..C t

Ds      (6.5) 

The terminal velocity, tV , is given by the following correlation developed by Garside 

and Al-Dibouni [6]: 

( ) ( ) �
�
��

�
� +−++−= 22 212006006050 AABRe.Re.Re.A.Vt (6.6) 

where 

144.
gA ε=        (6.7) 

  

The Reynolds number, Re, is defined as 

g

ggsp vvd
Re

µ
ρ�� −

=       (6.9) 

B =

28180 .
g. ε

652.
gε

850.g ≤ε

850.g >ε
(6.8) 
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where gµ  is the gas viscosity. 

These equations are solved numerically for the fluidized bed system using a 

modified version of the SIMPLE method developed by Patankar [7].  For more details 

on the solution of the gas-phase equations, the reader is referred to the MFIX 

Numerical Theory Guide [8].   

 
 

6.1.2 Boundary/Initial Conditions 

 The fluid simulation domain consists of a two-dimensional rectangular system 

with the origin of the x- and y- axis in the bottom left corner, as shown in Figure 6.2.  

The bed typically used is 8 cm wide by 20 cm tall. For this length and width, 27 

computational cells in the x-direction and 30 computational cells in the y-direction are 

used.  In the following text, any changes from this bed size are noted. 

For purposes of specifying the initial conditions, the bed is divided into a 

“bed” section and a “ freeboard” section with the former taking up the bottom half of 

the bed and the latter comprising the top half.  In the bed section, the void fraction is 

initially set to 0.42, which is a typical value at minimum fluidization.  The gas 

velocity is initially set to 80 cm/s in the y-direction. In the freeboard section the void 

fraction is initially set to unity and the y-component of the gas velocity is initially set 

to 100 cm/s.  In order to produce fluidization curves, most simulations are run with 

inlet conditions that vary with time and the initial conditions have essentially no 

effect on these results. 

The boundary conditions for the gas phase consist of no-slip, impermeable 

walls on the vertical sides of the bed.  For the outflow boundary condition at the top 
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of the bed, zero gauge pressure is specified across the entire width.  Thirteen separate 

inlet jets are used to specify the inlet boundary conditions.  The boundaries of each 

inlet jet are required to coincide with the boundary of a computational cell, limiting 

the range of sizes that can be used for the inlet jets.  In most cases, each jet consists of 

one computational cell (2.96 x 10-4 m in width).  At each inlet jet, the void fraction is 

set to unity and the gas velocity is set to achieve the desired superficial velocity in the 

bed.    This inlet jet configuration provides the most uniform fluidization with the 

least amount of dead space (unfluidized particles) in the bed.  Between each jet, the 

distributor plate is represented by impermeable, no-slip walls.  

  

MFIX uses a staggered grid system in which scalars (e.g. pressure, void 

fraction, solids fraction) are calculated at the center of each computational cell and 

Fig. 6.2 Computational simulation domain. 
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the components of the velocity vectors are calculated at the faces of each 

computational cell. Therefore, the pressure drop across the entire bed pressure is 

actually based on the difference between the specified zero pressure at the outlet and 

the pressure just above the inlet as illustrated in Figure 6.3.  The pressure drop 

associated with half of a computational cell is excluded from the overall pressure 

drop prediction.  The ramifications of this numerical treatment will be discussed in 

Section 6.4.2.2. 

 

6.2 Solid-Phase Simulation 

Unlike the gas phase, the solid phase is treated as discrete entities.  

Specifically, momentum (force) balances are applied to individual particles. The 

following sections describe the details of the discrete-particle treatment. 

 

6.2.1 Particle Advancement 

 The discrete-particle simulation operates using a time-stepped algorithm [9].  

The particles are modeled as spheres confined to movement in the x- and y- directions 

Fig 6.3  Inlet boundary conditions. 
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only (i.e., two-dimensional motion).  Equations of linear motion are used to determine 

the distance that each particle moves within a given time step: 

si,xi tvx ∆∆ =        (6.10a) 

si,yi tvy ∆∆ =        (6.10b) 

where ix∆  and iy∆ are the distances moved by the i th particle in the x- and y- 

directions, respectively, within the time step, ∆ts, and the speeds of the i th particle in 

the x- and y- directions are i,xv and i,yv , respectively. 

 The velocity change of each particle within a given time step is determined 

from the acceleration ( ia
�

) as follows: 

sii tav ∆∆ �� =        (6.11) 

The acceleration is determined using the Newtonian equation of motion 

i

i
i m

F
a

�
� =        (6.12) 

where the net force on every particle ( iF
�

) is a sum of the forces from repulsive 

collisional contacts with other particles and the walls ( i,collF
�

); cohesive contacts with 

other particles and the walls ( i,cohF
�

); gravitational forces ( i,gF
�

) and forces induced by 

the fluid ( i,fF
�

): 

i,fi,gi,cohi,colli FFFFF
�����

+++=      (6.13) 

Section 6.2.2 contains a discussion of the spring-and-dashpot model, which is used to 

determine the forces arising from particle contacts ( i,collF
�

).  The fluid forces ( i,fF
�

) 

will be detailed in Section 6.2.3, while the calculation of cohesive forces will be 
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discussed in Section 6.2.4 ( i,cohF
�

).  Gravitational forces ( i,gF
�

) are simply the product 

of the mass the gravitational constant. 

 

6.2.2  Linear-Spring-and-Dashpot Model 

At each time step, the total collisional force on a given particle is equal to the 

sum of all the collisional forces imposed on it at that time step: 

�
=

=
i,coln

i
ij,colli,coll FF

1

��
      (6.14) 

where ncol,i is the total number of contacts between the i th particle and other particles 

and/or walls at the given time step, and ij,collF
�

 is the collisional force on the i th particle 

due to contact with the j th particle (or wall).  For particle-particle contacts, the 

collisional force imposed on the i th particle from the j th particle is equal in magnitude 

but opposite in direction from the collisional force imposed on the j th particle by the 

ith particle ( ji,collij,coll FF
��

−= ).   

The discrete-particle model used here is a soft-sphere model.  Particle overlap 

is used to identify the occurrence of collisions and to calculate the magnitude of the 

repulsive force generated by the collision.  During each collision, a normal and a 

tangential component of the contact force is experienced by each particle: 

ij,tij,tij,nij,nij,coll kFkFF
���

+=      (6.15) 

where ij,nF  is the normal component, and ij,tF  is the tangential component of the 

contact force on particle i due to contact with particle j.  The normal vector pointing 
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from the center of the i th particle to the center of the j th particle is given by ij,nk
�

.  The 

unit vector tangent to the plane of contact is given by ij,tk
�

. 

 

6.2.2.1 Normal contacts 

The normal component of the repulsive force between colliding particles i and 

j is based on the linear-spring-and-dashpot model: 

t
KF ij,n

nnij,nij,n ∂
∂

+−=
δ

ηδ      (6.16) 

where ij,nδ  is the normal component of the overlap between particles i and j, ij,nv  is 

the normal component of the relative velocity, nK is the normal spring constant which 

characterizes the stiffness of the particles, and nη is the normal damping coefficient 

which controls the amount of kinetic energy dissipated during the collision. This 

model is illustrated in Figure 6.4.  The normal overlap can be calculated as the 

difference between the sum of the particle radii ( innerr2 ) and the distance between 

particle centers: 

( ) ( )222 jijiinnerij,n yyxxr −+−−=δ     (6.17) 

where xi and yi are the x- and y- components of the position of the i th particle, and xj 

and yj are the x- and y- components of the position of the j th particle. The normal 

component of the relative velocity is the dot product of the relative velocity ( ijv
�

) and 

the normal unit vector ( ij,nk
�

) as follows:  

ij,nijij,n kvv
�� ⋅=        (6.18) 

where 
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jiij vvv
��� −=         (6.19) 

 

Particle-wall collisions are also resolved using the same equations (6.16-6.19), 

with minor modifications.  Specifically, the wall velocity is always zero and the wall 

position used to calculate the overlap (equation 6.17) is adjusted to place the wall 

position one radius within the actual wall position. Furthermore, the normal unit 

vector ( ij,nk
�

) is always perpendicular to the wall and the tangential unit vector ( ij,tk ) is 

parallel to the wall  

 

6.2.2.2 Oblique Contacts 

 Tangential interactions are calculated as either sticking or sliding contacts 

based on the following inequality: 

ij,nij,t FF µ≤        (6.20) 

Fig. 6.4  Linear-spring and dashpot model. 

Normal Spring

Normal Dashpot

Frictional Slider

Tangential 
Dashpot

Tangential 
Spring



 83 

whereµ is the coefficient of friction.  If this inequality is not satisfied, then the 

particles undergo a sliding contact and the tangential component of the collision force 

is calculated as: 

ij,nij,t FF µ=        (6.21) 

If the inequality is satisfied, then the tangential component of the sticking contact 

force is calculated as follows: 

ij,tttij,tij,t vKF ηδ −−=       (6.22) 

where tK is the tangential spring constant and tη is the tangential damping coefficient.  

In this expression, ij,tv
�

is the tangential slip velocity between the two particles:  

( )jiinnerij,tijij,t rkvv ωω ++⋅=
��

     (6.23) 

where iω and ωj are the rotation rates of the i th and j th particles, respectively, and innerr  

is the particle radius.  Also, ij,tδ
�

is the tangential overlap, defined as follows: 

ij,tsij,t vt ⋅= ∆δ        (6.24) 

As with the calculation of the normal component of the collision force, the 

tangential component of the collision force for particle-wall contact uses the same 

equations presented here for particle-particle collisions with minor modifications.  In 

particular, the wall velocity is zero in both directions and the rotation rate of the wall 

is also set to zero. 
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6.2.2.3 Determination of Spring and Dashpot Parameters 

 The linear-spring-and-dashpot model is a simplified description of the contact 

mechanics that occur during a particle collision.  The following sections contain a 

description of the important issues involved with the selection of values for the spring 

constant and dashpot coefficient. 

 

6.2.2.3.1  Determination of Κn and ηn via Collision Experiments 

 The normal spring constant (Kn) and dashpot coefficient (ηn) are model inputs 

that cannot be directly measured directly.  However, these values can be chosen such 

that they produce collision outcomes similar to those measured experimentally.  More 

specifically, the coefficient of restitution and collision duration can be used to set the 

linear-spring and dashpot parameters.  A mapping between the experimentally-

measured quantities and the spring and dashpot parameters is possible by analyzing 

the equation of motion for two colliding spheres (see Appendix B).  This treatment 

results in the following expression for the coefficient of restitution (e) and the 

collision duration (tc): 

�
	



�
�

−
=

q
expe oπαω

      (6.25) 

q
tc

π=         (6.26) 

where the intermediate variables are defined as follows: 

m/Kno 2=ω       (6.27) 

n

n

mK2

ηα =        (6.28) 
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21 αω −= oq       (6.29) 

 By targeting a specific coefficient of restitution and collision duration, the 

spring and dashpot parameters can be chosen to obtain the desired values.  The 

coefficient of restitution has been measured experimentally in many studies [10-14], 

and thus provides a good benchmark for the determination of a realistic spring and 

dashpot parameters.  However, data for the collision time is extremely limited.  These 

considerations have led many researchers to choose the spring and dashpot 

parameters based on the matching of the restitution coefficient and on numerical 

considerations rather than the matching of the restitution coefficient and collision 

duration [15].  These numerical considerations are covered in the following section. 

 

6.2.2.3.2   Numerical Stability and Accuracy 

As the spring constant gets larger (i.e., the spring gets stiffer), the duration of 

a given collision decreases, and hence the time step must be smaller in order to avoid 

numerical inaccuracies and instability.  Several previous works have given the 

following expression for the critical time step: 

( ) 21
1

/
ncr K/mCt =∆       (6.30) 

where C1 is a constant that is on the order of 10 (though slightly different values have 

been reported) [15-17].  In general, these considerations put an upper limit on the 

magnitude of the time step for a given spring constant.  Note that a smaller time step 

leads to longer computational times for a given simulation.   

To reduce computational times, the spring constant is often made artificially 

soft [15, 17-19], thereby resulting in a collision duration that is unrealistically long.  
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(The damping coefficient is still set, though, to achieve a realistic coefficient of 

restitution.)  Several researchers [15, 18, 20] have indicated that the use of an 

artificially small spring constant does not have a significant effect on the nature of the 

flow in fluidized bed simulations.  The parameters used in previous simulations of 

fluidized beds, and specifically those that utilize a linear-spring-and-dashpot model, 

are reviewed in the next section. 

 

6.2.2.3.3  Parameters Used in Previous and Current Efforts 

Table 6.1 contains the input values used by previous researchers for the 

contact model: spring constant, dashpot coefficient, friction coefficient ( µ ), and 

particle phase time step ( st∆ ).  All of the efforts listed in Table 6.1 used a linear-

spring-and-dashpot model to simulate a fluidized-bed system.  Also given are the 

corresponding values for the restitution coefficient and collision duration (see 

equations 6.25 and 6.26).  (Italicized values for the damping coefficient and collision 

duration were not provided by the authors, but instead calculated using given values 

along with equations 6.25 or 6.26, or equations provided by the authors.)  Many 

efforts have based their system on the seminal work by Tsuji et al.  As mentioned in 

Section 5.2, Xu and Yu [21] have noted that the spring constant used by Tsuji et al. 

was made artificially small to reduce computational time leading to particles that are 

unrealistically soft.  

Up to this point, only the spring and dashpot parameters associated with the 

normal direction have been considered.  The determination of the tangential spring 

and dashpot parameters has been given very little attention in the literature.  In the 
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work of Yuu et al. [22] a Hertzian contact model was used and they assumed that the 

tangential spring constant was 2-5 times smaller than the normal counterpart based on 

the argument that normal elastic modulus is about 2-5 times larger than the shear 

modulus for most materials.  However, the majority of efforts have simply assumed 

that the normal and tangential values are the same for the spring constant and 

coefficient of dissipation  [15, 17, 19, 20]. 

   

The coefficient of friction is one parameter that can be measured directly in 

experiments [23].  Most efforts have used a value near 0.3 (Table 6.1), and this value 

is also used in the current effort.  With regard to particle-wall contacts, all the efforts 

listed in Table 6.1 use the same spring and dashpot parameters for both particle-

particle and particle-wall contacts.  The same approach is taken for most simulations 

in this effort, unless otherwise noted.  Table 6.2 presents the parameters employed in 

all of the simulations for this study, unless otherwise noted. Limited experimental 

results [10, 24, 25] indicate the realistic particle collision times are on the order of 

100 microseconds. In order to achieve collision times of this order of magnitude, a 

spring constant of approximately 8000 N/m2 would be necessary.  The particles used 

effort year K n  (kg/s2) ηηηη n  (kg/s) ∆∆∆∆ t s e t c  (sec) µµµµ
Tsuji, et al. 1993 800 0.0180 2.0 x 10-4 0.9 1.06 x 10 -3 0.3

Xu and Yu 1997 50000 0.15 1.5 x 10-5 0.9 1.34 x 10 -5 0.3

Gera, et al. 1998 800 0.012 2.0 x 10-4 0.9 7.47 x 10 -4 0.3

Kawaguchi, et al. 1998 800 0.012 2.0 x 10-4 0.9 7.47 x 10 -4 0.1-0.3

Mikami, et al. 1998 800 0.0016 2.58 x 10-5 0.9 9.26 x 10 -5 0.3

Xu, et al. 2000 40000 0.12 2.0 x 10-5 0.9 1.42 x 10 -4 n.s.

Kuwagi, et al. 2000 800 8.26x10 -6 1.0 x 10-6 0.9 1.42 x 10 -5 inf.
Rhodes, et al. 2001 800 0.0016 not. spec. 0.9 9.26 x 10 -5 0.3
Xu., et al. 2002 50 1.65x10 -5 not. spec. 0.9 8.64 x 10 -6 0.3
Limtrakul, et al. 2003 800 0.022 not. spec. 0.9 1.32 x 10 -3 0.3

Ye, et al. 2004 7 2.7x10 -6 4.2 x 10-6 0.9 1.82 x 10 -5 0.3

Table 6.1. Linear spring and dashpot parameters used in previous efforts 
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in this study were made softer in the interest of computational time. Nonetheless, the 

results of the softened particles were also spot-checked against simulations using 

spring constants that led to more realistic collision times to ensure that physical 

accuracy was not compromised. The spring constant does have a slight effect on the 

calculated minimum fluidization velocity, but the pressure drop at fluidization is not 

affected. These results are presented in Appendix E. 

  

An initial goal of this work was to reproduce the results of Rhodes et al., so 

the default parameters in Table 6.2 closely mimic the conditions in that effort.  The 

conditions listed in Table 6.2 can be considered the default for all the results 

presented. For those cases in which the values of input parameters were changed, a 

special note is made in the text.  The values for e and tc were not specified explicitly, 

Table 6.2 Soft-sphere parameters used in fluidized bed simulation. 

Parameter Value
number of particles (n) 4000
fluidized bed width (xmax )  (m) 0.08
fluidized bed height (ymax )  (m) 0.2
computational cells in x-direction (mmax ) 27
computational cells in y-direction (nmax ) 30

Solid phase time step (∆ t s)  (s) 2.25x10-5

Particle diameter (D P )  (m) 0.001

Particle density (ρ s) (kg/m3) 2650

Normal spring constant (K n ) (kg/s2) 800

Tangential spring constant (K t ) (kg/s2) 800

Normal damping coefficient (η n )  (kg/s) 0.79 x 10-3

Tangential damping coefficient (η t )  (kg/s) 0.79 x 10-3

Friction coefficient (µ) 0.3
Coefficient of restitution (e) 0.94

Collision duration (t c ) (s) 9.25 x 10 -5

Normal wall spring constant (K n-wall ) (kg/s2) 800

Tangential wall spring constant (K t-wall ) (kg/s2) 800

Normal wall damping coefficient (η n-wall )  (kg/s) 0.79 x 10-3

Tangential wall damping coefficient (η t-wall )  (kg/s) 0.79 x 10-3

Wall friction coefficient (µ wall ) 0.3
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but calculated based on the explicitly-set parameters using equations 6.25 and 6.26 

respectively. 

 

6.2.3 Calculation of Fluid Force on Particles 

The force exerted by the gas on the particles consists of a drag force ( i,dF
�

) 

and a pressure contribution ( i,pF
�

) as follows: 

i,di,pi,f FFF
���

+=       (6.31) 

The pressure force is given by: 

ii,p v)P(F ∇=
��

       (6.32) 

where iv  is the volume of the i th particle.  The drag force on each particle is 

calculated using the drag coefficient ( gsF ) defined in equation 6.4.  For each particle, 

the drag force is given by 

i
mn,s

mn,gmn,sgs
i,d v

)vv(F
F

ε

��
� −

=      (6.33) 

where mn,sv
�

is the average solid velocity, mn,gv
�

is the average gas velocity and mn,sε  is 

the solid volume fraction.  Here, m and n represent the indices of the computational 

cell in the x- and y- direction respectively.  The methods used to calculate these 

quantities will be described in Section 6.3.1. 

 

6.2.4 Cohesive Interactions 

Two different cohesion models are applied to the fluidized-bed simulation in 

this work, namely a square-well model and a Hamaker model for van der Waals 
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forces.  Just as with contact forces, particles are allowed to have multiple cohesive 

interactions in a single (particle-phase) time step.  A qualitative description of these 

models has already been presented in Chapter 1; the following sections will outline 

the mathematical implementation of these models in this fluidized bed simulation. 

 

6.2.4.1 Hamaker Model for van der Waals Forces 

 The Hamaker theory is used to estimate the van der Waals force between two 

equal-sized, spherical particles according to the following equation [26]: 

212H

Ar
F inner

vdW =        (6.34)  

where innerr  is the particle radius;  A is the Hamaker constant, which is specific to a 

given material and has typical values on the order of 10-20 J; andH is the minimum 

surface-to-surface separation distance between two particles i and j: 

( ) ( ) innerjiji ryyxxH 222 −−+−=     (6.35) 

The corresponding cohesive force between a spherical particle and a flat wall is [26]: 

26H

Ar
F inner

wall,vdW =       (6.36) 

For both of these expressions, the cohesive force approaches infinity as the 

separation distance approaches zero.  This singularity incurred at particle contact is 

avoided by introducing a “cutoff”  distance, cutH .  For separation distances below this 

cutoff distance, the interparticle cohesive force is given by a surface adhesion force 

( adF ) model [27].   

γπ innerad rF 2=       (6.37) 
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where γ  is a constant surface energy per unit area which is calculated based on the 

specified Hamaker constant to make the Hamaker force continuous at the cutoff 

distance.  Thus, the cohesive force is maintained at a constant value for any 

separation distances (based on equation 6.38) below the minimum cutoff distance, 

which includes any “negative”  separation distances that occur during actual particle 

contact.  For this work, a minimum cutoff distance of 4x10-10 m was used.  This value 

is based on the average interatomic distance for many common solids [27].  This 

treatment is depicted graphically in Figure 6.5 along with the square-well model, as 

described below. 

 

 

6.2.4.2  Square-well Model  

The implementation of the square-well potential in the fluidized bed system is 

similar to that of the granular flow system described in Chapter 3.  The main 

modification incorporated into the fluidized-bed system is the addition of particle-

wall contacts.  These interactions are modeled like particle-particle contacts except 

that the wall is assigned an infinite mass.  Furthermore, to account for the additional 

Fig. 6.5 Forces implemented by cohesion models. 
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attractive force resulting from the interaction of a plane with a sphere rather than 

between two spheres, the well depth is doubled in all particle-wall interactions.  The 

doubled cohesive-well depth at the wall is consistent with the Hamaker model of van 

der Waals forces in which the cohesive force between a sphere and a plane is twice 

that of the force between two spheres (see equations 6.34 and 6.36). 

To identify cohesive interactions in the context of the soft-sphere algorithm, 

particles are checked for square well width overlap (router) at each time step.  Once a 

square-well overlap is detected, an approaching cohesive interaction is implemented 

at that time step (equation 3.7).  For each particle, a list of overlapped particles is kept 

so that once a particle leaves the square-well, an escaping-cohesive or capture-

cohesive interaction can be implemented in the form of a cohesive force (equations 

3.9 and 3.11, respectively) at that time step.  This method differs from the predictive 

(event-driven) method used in the granular flow simulation since the square-well 

cohesive interactions are not implemented at the exact outer edge of square well.  The 

exact separation distance at which interactions are implemented is determined by the 

end of the time step.  However, the time step is set small enough that the extra 

distance traveled by the particles is typically an order of magnitude smaller than the 

distance between the particle surface and the outer edge of the square well. 

 

6.2.5  Initial Conditions 

 To start the simulation, particles are given random initial positions and 

velocities.  Replicates were obtained by using a different random number seed which 
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resulted in slightly altered initial positions and velocities.  These replicates were used 

to quantify the error associated with the simulated results.   

 

6.3  Coupling of the Gas and Solid Phases 

 Advancement in time of both phases is accomplished via a time-stepped 

algorithm.  Because the inherent time scales of each phase are different, the solution 

proceeds with two different time steps, namely ∆tf for the fluid phase and ∆ts for the 

solid phase.  In most simulations, the time step for the gas phase is 20 times larger 

than the time step for the particle phase.  Because the gas phase uses a larger time 

step, the discrete-particle simulation goes through several iterations for each single 

time the gas-phase equations are solved.  A flowchart of this computational algorithm 

is shown in Figure 6.6.  The gas-phase quantities (i.e., gas velocity and pressure) 

required for the solution of the particle force balance remain constant over these 

iterations.  Once the discrete-particle simulation has completed enough iterations to 

equal the elapsed time for the fluid-phase calculation, the fluid phase equations are 

solved again and the cycle repeats.  This process continues until the simulation 

reaches the specified stop time.  

 

6.3.1 Calculation of Void Fraction and Average Particle Velocity 

 Although the gas-phase simulation is only two-dimensional, the simulation 

domain is assumed to have a depth of one particle diameter for the purposes of 

calculating the void fraction [17, 18, 21, 28, 29].  In each computational cell the 



 94 

solids volume fraction ( mn,sε ) is calculated as follows: 

mn

n

i
i

mn,s V

v
mn

�
== 1ε        (6.38) 

where iv  is the volume of the i th particle, mn,sε  is the solids volume fraction, mnV  is the 

volume of the grid cell and mnn  is the total number of particles in the m, n grid cell.  

Fig. 6.6 Fluidized Bed simulation algorithm. 
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The average solids velocity is calculated by averaging over all the particles in a given 

grid cell: 

mn

n

i
i

mn,s n

v
v

mn

�
== 1

�

�
      (6.39) 

where mn,sv
�

 is the average solids velocity in grid cell m, n, and iv
�

 is the velocity of 

particle i. 

 It should be noted that this method of calculating the void fraction (developed 

by Xu and Yu [21]) is not completely accurate as the particles confined to a single 

plane will not pack the same as particles allowed to move in a three-dimensional 

domain.  Because of this discrepancy, a two-dimensional fluidized bed simulation and 

a three-dimensional fluidized experiment of the same height would not be expected to 

produce equivalent pressure drops.  Other methods have been devised to calculate the 

void fraction.  Hoomans et al. [29] calculated the void fraction as an area fraction 

( D,g 2ε ), assuming the particles are discs in a plane.  They then converted this area 

fraction to a void fraction using the following relation: 

( ) 23
23 1

3

2
1 /

D.gD,g ε
π

ε −−=      (6.40) 

which assumes equal spacing between the two-dimensional circular disks in a 

hexagonal lattice and three-dimensional spheres in a face centered cubic (FCC) lattice.  

This expression was later modified by van Wachem et al. [28] by adding an empirical 

parameter to take into account the non-ideal packing that occurs in three-dimensional 

systems.  van Wachem et al. went on to compare the results using several different 

methods to calculate the void fraction and found that none of the methods result in a 
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predicted pressure drop that matches experimental pressure drops for a bed of equal 

height.  Nonetheless, as will be shown in Section 6.4.2.2, the inaccuracy imposed by 

this conversion of the void fraction appears to have little effect on the predicted 

minimum fluidization velocities, which match closely with those obtained from 

empirical relations. 

 

6.3.2 Balance of Forces between Fluid and Solid Phase 

An important issue in the coupling of the two phases is that the force exerted 

by the fluid on the particles must balance the force exerted by the particles on the 

fluid in order to satisfy Newton’s third law of motion.  Some of the early Eulerian-

Lagrangian fluidized bed models did not meet this criterion.  Both Tsuji et al. [17] 

and Hoomans et al. [29] implemented forces on the particles individually and 

implemented the force on the fluid based on the bulk properties of each 

computational cell.  This approach does not guarantee that the forces will be balanced.  

This discrepancy was first noted by Xu and Yu [21], who ensured that the forces 

would balance by defining the force of the particles on the fluid to be the sum of the 

fluid forces on each particle for a given computational cell.  Hoomans et al. corrected 

the earlier inconsistency in a later work [30].   

The coupling method implemented in this work does correctly balance the 

forces between particles and the fluid.  By using the average particle velocity in a 

given grid cell to calculate the drag force on each individual particle, the drag force is 

the same on every particle in a give grid cell.  A comparison equations 6.34 and 6.39, 

indicates that the force on each particle is simply the drag force exerted on the fluid 
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for the given computational cell, divided by the number of particles in that cell.  This 

approach differs from the approach developed by Xu and Yu [21] and the approach 

developed by Hoomans et al. [30], but the approach used here does still satisfy 

Newton’s third law of motion. 

 

6.4 Model Verification and Validation 

 Various test cases have been examined for the purposes of model verification 

and validation.  Verification refers to the process of ensuring numerical accuracy of 

the model solution, where as validation refers to the ability of the model to accurately 

predict system behavior (i.e, verification deals with numerics while validation deals 

with physics) [31].  Although full verification and validation are not possible from a 

practical standpoint, an acceptable level of confidence in the model is instead pursued.  

In this work, verification and validation efforts focused on the discrete-element 

portion of the simulation, since the fluid-phase portion of MFIX has been thoroughly 

tested and documented [15, 32-35].  

 

6.4.1  Verification Methods 

Although the verification of the fluid-phase equations in the MFIX code is not 

examined in this effort, particular attention is paid to the numerical settings involved 

with the solution of the equations. More specifically, to ensure that the fluidized-bed 

results are relatively insensitive to numerical parameters, the time step associated 

with the dynamic solution of both phases and the size of the spatial grid were 

systematically varied. These results are presented in Appendix E.  The parameters 
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varied include the gas-phase time step ( ft∆ ), the solid-phase time step ( st∆ ), the 

number of computational cells in the x-direction (mmax), and the number of 

computational cells in the y-direction (nmax).  For all parameters investigated, the 

simulation results do not vary significantly as the settings were changed from the 

default values (Table 6.2).   

The discrete-particle portion of the fluidized bed model was verified by 

simulating two-particle collisions and comparing the post-collisional velocities with 

calculations performed in a spreadsheet.  This procedure was carried out for non-

cohesive particles, as well as for simulations using the square-well and Hamaker 

model.    For the cohesive cases, three-particle simulations were also compared to 

spreadsheet calculations to ensure that agglomeration and breakup of two-particle 

agglomerates by a third particle are mathematically correct.   

 

6.4.2 Model Validation 

6.4.2.1 Qualitative Validation 

The first effort to validate the results of the fluidized-bed model involved a 

qualitative examination of animations.  Animations were examined for 2-particle 

systems, 3-particle systems and 10-particle systems to ensure that particle interactions 

are resolved in a realistic manner (e.g., particles do not pass through each other).  

This assessment involved both cohesive and non-cohesive systems. Animations were 

also examined for non-cohesive fluidized beds with 4,000-20,000 particles.  As 

demonstrated in Figure 6.7, these animations exhibit realistic bubbling behavior. 

Animations were also examined for cohesive simulations.  These results, which are 



 99 

consistent with the known qualitative behavior of cohesive systems, will be discussed 

in the next chapter. 

 

 The identification of the frequently-observed, pressure-drop hysteresis was 

used as another qualitative benchmark to gauge the effectiveness of the simulation. In 

experimental efforts, fluidized beds exhibit a hysteresis in the plot of pressure drop 

versus superficial velocity [36].  A hypothetical defluidization / fluidization cycle is 

shown in Figure 6.8.  With the particle bed starting in the bubbling state, the gas 

velocity is gradually decreased to zero in small, stepped increments (defluidization 

cycle).  Once the particles are in the packed state, the superficial velocity (Us) is 

increased in a similar manner.  An increase in the gas velocity will increase the 

pressure drop across the particles, due to increased frictional losses.  Once the 

fluidized state is reached, the pressure drop will remain constant at a value equal to 

the weight of the particles divided by the cross-sectional area of the bed.  However, 

just prior to fluidization, a pressure overshoot [ ( ) 1>bA/W/P∆ ] is observed in 

experiments.  This pressure overshoot does not occur as the gas velocity is decreased 

(Figure 6.8).  This aspect of fluidized beds will be investigated in more detail in 

Chapter 8. 

Fig 6.7 Snapshots from non-cohesive bubbling fluidized bed simulation (4000 particles, Us=91.6 
cm/s). 
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To test the ability of the fluidized-bed simulation to predict this behavior, the 

particles were brought to a bubbling state (Us = 120 cm/s).  Next, the gas velocity was 

slowly decreased in 37 equal steps to a superficial velocity of Us = 56.76 cm/s over 

the course of 3.7 seconds (i.e., each gas velocity was maintained constant for 0.1 

second). Three additional steps were used to take the superficial velocity to zero in 

0.3 seconds.  The inlet gas velocity was then gradually increased in stepped 

increments, using the reverse of the defluidization procedure.  At each step, the gas 

velocity was maintained long enough to allow the bed to come to a statistical steady 

state (0.1 seconds).  The steady-state pressure drop was then measured at each inlet 

velocity to compile a plot of pressure drop versus superficial velocity.  The pressure 

drop across the bed was estimated by the pressure calculated at the lowest 

computational node along of the fluidized bed (i.e., the first computational node 

above the distributor plate).  This quantity is averaged over time.  The superficial gas 

velocity ( sU ) was calculated by summing the overall volumetric flow rate through 

Fig 6.8 Hypothetical fluidization cycle 
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the inlet jets and dividing this quantity by the cross-sectional area of the bed ( bA ) as 

follows: 

b

n

i
jetjet

s A

VA
U

jets

�
== 1       (6.41) 

where the volumetric flow rate through each jet is the specified gas velocity at that jet 

( jetV ) multiplied by the cross sectional area ( jetA ) of that jet.  The simulation predicts 

the expected hysteretic behavior, as is exhibited in Figure 6.9. These results also 

display large variation in the pressure drop just above the minimum fluidization 

velocity due to bubbling.  There also some notable discrepancies between the 

predicted behavior and the behavior that has been observed in experiments.  The 

pressure decrease at incipient fluidization is not as abrupt in the simulation results as 

it has been observed in experimental results.  Also the packed bed portion of the 

defluidization curve predicted here is more linear than in experimental data  [37]. 

 

 

 

Fig. 6.9 Results of fluidized bed simulation showing hysteresis in fluidization curve. 
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6.4.2.2 Quantitative Validation 

 In addition to the qualitative benchmarks discussed in the previous section, 

plots of pressure drop versus superficial velocity also provide quantitative validation.  

Specifically, once the inlet velocity is high enough to fluidize all particles in the bed, 

the pressure drop across the particles multiplied by the cross-sectional area should 

balance the total weight [38].    This pressure drop was determined using the same 

procedure described in the previous section.  The calculation of the weight of the 

particles is complicated by the discrete nature of the solution to the gas-phase 

equations, which does not allow for calculation of the pressure at the very bottom of 

the fluidized bed.  As illustrated in Figure 6.10, the lowest point at which the pressure 

is calculated is at the middle of the lowest computational cell.  Therefore, when 

comparing the pressure drop to the weight of the particles, only those particles above 

the middle of the lowest computational cell are considered. 

   

As expected, the weight of these particles, which will be called the theoretical 

bed weight (Wth), is balanced by the simulated pressure drop, as displayed in Figure 

6.11. The data presented in Figure 6.11 is the average of three replicate runs and the 

Fig. 6.10. Methodology in calculating theoretical fluidized bed weight (Wtheo). 
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error bars are the standard deviation in the pressure at each superficial velocity.  The 

inclusion of additional replicates did not reduce the size of the error bars.  

 

 Another important quantitative benchmark is the minimum fluidization 

velocity. The minimum fluidization generally refers to the velocity above which 

further increases in the superficial velocity do not cause a further increase in the bed 

pressure drop. In previous efforts, however, some ambiguity exists in the exact 

procedure used to determine the minimum fluidization velocity.  Figure 6.12 depicts 

the typical defluidization and fluidization branches of the pressure drop ( P∆ ) versus 

superficial velocity plot (Us).  As the superficial velocity is increased through the 

packed bed regime, a point will be reached at which the pressure drop is equal to the 

weight of the particles (point A in Figure 6.12).  Some efforts have identified this 

velocity as the minimum fluidization velocity [39, 40] even though  the particles are 

not fluidized at this point.  As the superficial velocity is increased further, a point is 

reached at which the pressure overshoot is sufficient to free the particles from their 

packed configuration (point B in Figure 6.12).  This point has been identified as the 

minimum fluidization velocity by some authors [38], although the pressure will 

Fig 6.11. Comparison of calculated pressure drop to weight of particle bed. 
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decrease slightly beyond this point as the particle bed expands.   As the superficial 

velocity is decreased from the bubbling state, a velocity is reached where the pressure 

drop starts to decrease (point C in Figure 6.12).  At this point, the fluidized particles 

are gradually transitioning to the packed state.  Some references have identified this 

point as the minimum fluidization velocity [15, 18, 20, 41]. While all three of these 

velocities loosely satisfy the vague definition of the minimum fluidization velocity 

given earlier, the associated numerical values are different. For the purposes of this 

project, point A is referred to as the theoretical minimum fluidization velocity ( th,mfU ), 

point B is referred to as the incipient fluidization velocity ( in,mfU ), and point C is 

referred to as the defluidization velocity ( df,mfU ). 

 

The procedure for calculating these critical velocities involves graphical 

analysis of the pressure drop versus superficial velocity curve obtained from 

simulations.  A representative defluidization (decreasing Us) curve is displayed in 

Figure 6.13.  Plots such as this are used to identify the defluidization velocity.  A 

Fig 6.12 Points identified as minimum fluidization velocity in previous studies. 
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straight line is fitted to the points in the packed bed region and the intersection of this 

line with the bA/'W  line is the defluidization velocity. 

 

A fluidization curve (increasing Us) is displayed in Figure 6.14.  Plots such as 

this are used to calculate the theoretical minimum fluidization velocity, the incipient 

fluidization velocity and the pressure overshoot ( overP∆ ).  In order to calculate the 

theoretical minimum fluidization, a straight line is fitted to all the points in the packed 

bed region of the plot.    The theoretical minimum fluidization is taken to be the 

intersection of this straight line and the bA/'W line.  Those data points above the 

bA/'W line, yet to the left of the bubbling region are considered to be in the pressure 

overshoot region. The incipient fluidization velocity is read at the maximum pressure 

recorded in the pressure overshoot region.  The pressure overshoot is simply the 

difference between the maximum pressure in this region and the bA/'W  line. 

Fig 6.13 Typical defluidization curve (decreasing Us) used to identify defluidization velocity. 
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Correlations for the minimum fluidization velocity are well-documented [38, 

42].  These correlations are developed by equating the weight of the particles in the 

bed (divided by the bed cross-sectional area) with empirical relations for the pressure 

drop in a packed bed such as the Ergun equation [38].  The intersection of these 

correlations is often referred to as the minimum fluidization velocity, which 

corresponds to the theoretical minimum fluidization velocity ( th,mfU ) described above. 

These correlations are highly sensitive to the void fraction at minimum fluidization.  

For example, for a change in the void fraction from 0.43 to 0.46, the Ergun equation 

predicts that the theoretical fluidization velocity changes from 68.53 cm/s to 80.89 

cm/s.  With such differences in mind, simulation results are compared with 

correlation predictions to ensure that the simulation results are reasonable.  

Specifically, the void fraction calculated by the simulation at minimum fluidization is 

Fig. 6.14 Typical fluidization (increasing Us) curve used to identify the pressure overshoot, 
theoretical minimum fluidization velocity and incipient minimum fluidization velocity. 
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employed in the correlation equation.  An upper and lower limit are used for the void 

fraction because this value fluctuates with time and location in the bed.  The upper 

limit of the void fraction was taken from the average void fraction along the 

centerline plus the standard deviation, while the lower limit was the same average 

minus the standard deviation.  In Figure 6.15, the range of predicted incipient 

fluidization velocities is compared to the theoretical minimum fluidization velocity 

predicted by the fluidized-bed model for three particle diameters (dp).  The transition 

from packed bed to fluidized bed calculated by the simulation falls within the range 

of fluidization velocities predicted by the Ergun correlation for each particle diameter. 

  

 From this point on, pressure drop results will be presented as a normalized 

pressure drop ( *P∆ ), which is the pressure drop divided by the theoretical particle 

weight (W’/Ab).  Furthermore, critical fluidization velocities will be presented in a 

normalized form ( *
*,*mfU ) which is the given critical velocity divided by the 

corresponding velocity for the non-cohesive case. In plots of the fluidization cycle 

and defluidization cycle, the superficial velocity will be normalized by the theoretical 

minimum fluidization velocity predicted by the non-cohesive simulation (Table 6.3). 

Fig. 6.15 Theoretical minimum fluidization velocities at varying particle diameter. 
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The other values of the non-cohesive critical fluidization velocities used for 

normalization are also presented in Table 6.3.  
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Chapter 7. Comparison of Square-Well Potential and Hamaker Model for 

van der Waals Forces 

 As stated in Chapter 1, one of the main objectives of this work is to assess the 

effectiveness of the square-well potential to capture the effect of cohesion in 

particulate systems.  To achieve this objective, a comparison is made between the 

simulation results based on a square-well model for cohesion with those of a more 

elaborate model for cohesion, namely the Hamaker description of van der Waals 

forces.  This comparison is a two-step process.  First, a method is devised to 

determine parameters for both cohesion models (i.e., square well and Hamaker) that 

would be expected to produce an “equivalent”  effect in the discrete-particle 

simulations.  The second part of this process is to devise appropriate methods for 

comparing the results of the two models.  This first part of this chapter deals with the 

former part of this process, which is the development of a mapping from Hamaker 

parameters to equivalent square-well parameters.  The second part of this chapter 

covers the qualitative and quantitative methods used to compare the results of the two 

treatments, with a focus on a fluidized-bed system. 

 

7.1 Parameter Mapping between Hamaker Model and Square-Well Model 

In order for a simplified model like the square-well to be useful, a physical 

basis for choosing values of input parameters is needed.  The inputs for the more 

elaborate Hamaker model are based on material considerations and thus a mapping 

from these quantities to the square-well inputs is sought.  More specifically, the input 

parameters needed for the Hamaker model is the Hamaker constant ( A ) and a cutoff 
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distance (Hcut), whereas the square-well model requires input values for the well 

depth ( D ) and the well width ( outerr ).  The Hamaker constant and cutoff distance 

control the magnitude and characteristic length, respectively, in the Hamaker model.  

With the square-well model, the well depth controls the magnitude of the cohesive 

force and the well width (defined in terms of the ratio of well width to inner radius, 

router/rinner) controls the length scale associated with the square-well model.  The 

Hamaker cutoff distance (4 x 10-10 m) is set to match the interatomic distance of 

many common solids [1].  Because these models are physically different, no set of 

parameters will produce exactly the same effects on individual particles. However, it 

may be possible for the two models to produce similar results on a locally-averaged 

scale.  With these ideas in mind, several strategies were considered as the basis for 

the mapping between parameters, as detailed below.   

 

7.1.1 Force Comparison 

A basic gauge of the level of particle cohesion is the magnitude of the 

cohesive force experienced by both particles.  Unfortunately, using this force as a 

common ground to determine equivalent parameters for the square-well and Hamaker 

models has some fundamental problems.  As displayed in Figure 7.1, the Hamaker 

model is defined by a cohesive force that varies as a function of separation distance.  

Therefore, to use a single force to characterize the level of cohesion, additional 

stipulations would be necessary (e.g. specific separation distance, averaging over a 

specified range). 
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A characteristic force is even less intuitive with the square-well model, since 

this model is not defined in terms of force, but in terms of the kinetic energy change 

for the given two-particle system.  This change in kinetic energy is implemented in 

the form of a momentum impulse, thereby making the force infinite at a given 

distance between the particles and zero everywhere else (Figure 7.1).   For these 

reasons, the use of an interparticle force as a basis for the mapping from the Hamaker 

model to the square-well model is inadequate.  

 

7.1.2 Potential Energy Comparison 

Another possible mapping method is to set the parameters in each model such 

that the overall potential energy change in a given particle-particle interaction is the 

same for each model.  When using the square-well model, the overall potential energy 

change is simply equal to the depth of the square well. However, the overall potential 

energy change induced by the Hamaker model is more complicated. In general, the 

energy change between two bodies experiencing an attractive force is equal to the 

negative of the work done by the attractive force [2]. This quantity can be obtained by 

integrating the attractive force over the distance traveled by the two bodies:   

Fig. 7.1 Force versus separation distance for Hamaker and square-well cohesion models. 
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dHF
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where ΦvdW is the potential energy of a two-particle system experiencing attractive 

Hamaker forces, H1 is their initial separation distance and H2 is their final separation 

distance.  As described in Section 6.3.1, the Hamaker model used here is 

characterized by a force that changes with separation distance (equation 6.35) until a 

specified cutoff distance is reached, below which the force remains constant (equation 

6.38). Using both of these expressions in the above equation leads to the following 

expression for the change in potential energy:   
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where A  is the Hamaker constant, innerr  is the particle radius, H is the surface-to-

surface particle separation distance, γ is the surface energy and max,nδ  is the maximum 

normal overlap between the particles during the soft-sphere collision.  Because the 

Hamaker van der Waals force is negligible at large separation distances, integration 

of equation 7.2 leads to the following expression: 

[ ]max,ncutinner
cut

inner
vdW Hr

H

Ar δγπΦ +−−= 2
12

   (7.3) 

While the distance traveled by the particles from the inner cutoff to the maximum 

overlap is very small, the van der Waals force is also at its maximum over this 

interval (Figure 7.1), so the second term in equation 7.3 cannot be ignored.  This 

treatment leads to the potential energy displayed in Figure 7.2. In order to calculate a 

value for the Hamaker potential energy change, the maximum overlap ( max,nδ ) must 

be known. For a non-cohesive system, this quantity can be calculated from the 
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equation of motion of the two colliding particles combined with the spring-and-

dashpot force law (Appendix B).  However, this solution shows that the maximum 

overlap, and thus the potential energy change, is a function of the initial relative 

normal velocity.  Because the potential energy change with the square-well model is 

not a function of relative normal velocity, this mapping method is inconsistent at the 

particle level. Furthermore, the determination of the maximum overlap, upon which 

this mapping method depends, is much more complex with the inclusion of cohesion 

(Appendix C).  In particular, if the Hamaker cohesion force is included in the particle 

equations of motion, an analytical solution is not possible and the maximum overlap 

must be determined numerically.  Overall, these two issues indicate that a mapping 

method based on achieving the same potential energy change is a poor choice. 

 

7.1.3 Escape-Velocity Comparison for Head-On Collisions 

Another possible method of mapping input parameters is to match the 

“escape” velocity that demarcates agglomeration (capture) and separation (escape) of 

two colliding particles.  By default, this method will overcome the issues related to 

the initial, relative, normal velocity discussed in the previous section.  With both 

models, a unique velocity exists such that all interactions with an approaching relative 

velocity below the escape velocity will result in the formation of an agglomerate.  For 

Fig. 7.2 Potential energy associated with the Hamaker and square-well cohesion models. 
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head-on (normal) collisions, the parameters in each model that control the magnitude 

of the cohesive force (A in the Hamaker model and D in the square-well model) 

dictate the escape velocity.  Higher levels of cohesion (higher A or D) result in higher 

escape velocities.  (Note that head-on collisions preclude the influence of length scale, 

namely rinner/router and Hcut, on the escape velocity.  The influence of length-scale on 

oblique collisions will be detailed in Section 7.3) 

For the square-well model, the escape velocity can be calculated analytically.  

During an interaction between the ith and jth particles, the criterion for agglomerate 

formation is defined in equation 3.8 as follows: 

( ) 0
42

3 ≤−⋅
m

D
vk c,ij,ij

��
      (7.4) 

 where 3,ijk
�

is the unit vector between particle centers at the instant of the departing 

cohesive interaction, c,ijv
�

 is the relative velocity after the inelastic collision and m is 

the particle mass. This expression defines the minimum departing velocity necessary 

to avoid agglomeration.  By combining equation 7.3 with the equations relating the 

post-collisional velocities to the pre-collisional velocities for inelastic collisions 

(equation 3.3) and approaching cohesive interactions (equation 3.8), the minimum 

approaching relative velocity for escape ( esc,ijv ) in a head-on collision can be obtained 

as follows (Appendix D): 
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This expression can then be rearranged to provide the well depth required to achieve 

the desired escape velocity for a given coefficient of restitution: 
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However, this expression is only valid for head-on collisions as the unit vector 

connecting the particle centers is not constant during the cohesive interaction 

sequence (approaching cohesive interaction, inelastic collision, departing cohesive 

interaction) for oblique interactions. If the normal unit vector changes during the 

interaction sequence derivation presented in Appendix D is not valid.  

For the Hamaker model, an analytical solution for the escape velocity is not 

possible (Appendix C).  Nonetheless, the escape velocity can be obtained numerically 

via a series of two-particle simulations.  More specifically, as depicted in Figure 7.3, 

two particles are separated by a finite distance in the x-direction and have the same y-

coordinates.  Furthermore, both particles are given a zero velocity in the y-direction.  

The x-component of velocities are set to equal and opposite values.  The simulation is 

allowed to proceed in time until a determination is made as to whether the particles 

escape or agglomerate.  To determine the escape velocity, a series of simulations are 

Fig. 7.3 Layout of two-particle simulations used to determine escape velocity. 
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run and the x-component of velocity of each particle is gradually increased (or 

decreased) in each simulation until the transition from agglomeration to escaping (or 

vice-versa) is achieved. 

 For the purposes of this work, equation 7.5 is used to develop a table of 

escape velocities for various cohesive well depths. Two-particle simulations are used 

to develop a table of escape velocities associated with different levels of cohesion 

with Hamaker model.  A comparison between both tables is then used to match 

equivalent cohesion parameters from each model (D and A). As detailed in the next 

section, many-particle simulations are then run with both models to assess the 

effectiveness of this mapping method.  The values used in this assessment process are 

presented in Table 7.1.   

 

7.2 Assessment of Mapping Method via Many-Particle Simulations 

The escape-velocity mapping is based on the behavior of two-particle 

interactions.  The mapping is now extended to many-particle systems to determine if 

similar fluidized bed behaviors are obtained.  The range of cohesive forces 

investigated is chosen to obtain the maximum cohesive forces possible, without 

exhibiting plugging and/or channeling. The useful range of parameters for each model 

that produce these conditions provides an initial means of testing the escape-velocity 

mapping method. For these simulations, router/rinner is kept constant at 1.01 and Hcut is 

Table 7.1. Normal escape velocities obtained using both 
the square-well and Hamaker van der Waals models 

D (dyn cm) v ij,esc  (cm/s)

1.00E-04 0.179
5.00E-04 0.400
1.00E-03 0.566

A (dyn cm) v ij,esc  (cm/s)

3.34E-12 0.179
7.49E-12 0.400
1.06E-11 0.566
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kept constant at 4 x 10-10 m.  The effect of these parameters is examined in Section 

7.2.2.3. 

 

7.2.1 Qualitative Comparison: Defluidization 

From a practical standpoint, the most undesirable consequence of cohesion in 

fluidized beds is the inability to fluidize in a conventional manner (homogenous or 

bubbling) due to the formation of plugs or channels.  In terms of the Geldart 

classification [3] (see Figure 1.2), this behavior is exhibited by for Type C (relatively 

small, cohesive) particles. The simulation developed here is capable of predicting this 

type of behavior with both cohesion models.  With the square-well model, plugging 

and channeling occur at roughly 310−>D , while simulations using the van der Waals 

model exhibits plugging and channeling at approximately 1110−>A .   These 

parameters map to escape velocities that are roughly same (see Table 7.1).  It is 

worthwhile to note, though, that the transition from Type A (fluidizable) to Type C 

(not fluidizable) behavior is not sufficiently abrupt to be used as a quantitative 

benchmark for validating the mapping.   

As an aside, this level of cohesion ( 1110−=A ) corresponds to a cohesive force 

to particle weight ratio of approximately 20.  Previous efforts to simulate cohesive 

gas-solid flows have observed similar levels of cohesion at the Type A – Type C 

boundary.  Rhodes et al. [4] observed Type C behavior at cohesive-force-to-particle-

weight-ratios greater than 46 with a simplified surface cohesion model. Ye et al. [5] 

observed this transition at a ratio of 56 with a van der Waals model.  From an 

experimental standpoint, the cohesive-force-to-particle-weight ratio for the transition 
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to Type C behavior is known to vary significantly depending on the nature of the 

cohesive forces.  Data provided by Molerus [6] indicate that the Type A-Type C 

transition occurs for a cohesive-force-to particle-weight ratio of about 1900 for 

micron-sized particles experiencing van der Waals forces. Experiments with 

controlled liquid bridging forces by McLaughlin and Rhodes [7] revealed that the 

critical ratio is approximately 1.  While defluidization occurs at relatively similar 

levels of cohesion (i.e. mapped to the same escape velocity) for both the models 

investigated here, the nature of the defluidization is different. 

 

As revealed in Figure 7.4, the square-well model forms plugs that extend 

across the bed diameter as a single mass.  Plugs formed with the Hamaker model are 

not as strong and tend to break apart into stable channels as illustrated in Figure 7.5.   

For higher levels of cohesion, simulations using the van der Waals model exhibit the 

formation of a completely static bed structure as in Figure 7.6. This phenomenon is 

Fig. 7.4 Square-Well model: Snapshots displaying plugging (D=1x10-3 erg). 
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Fig. 7.5 Hamaker model: Snapshots displaying plugging (A=1x10-11 erg) 
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not observed with simulations using the square-well potential.  The plugs evident in 

Figure 7.4 are observed at all higher levels of cohesion.  Video images of fluidized 

bed experiments [8] with Type C particles indicate that the solid-plugs predicted by 

the square-well model more closely approximate the experimental system.  However, 

some experiments have shown the formation of stable, expanded bed structures due to 

cohesive effects [9], thus indicating that the Hamaker prediction may be more 

accurate.  

 

7.2.2 Qualitative Comparison: Mixing 

In systems that do not exhibit plugging and channeling, mild levels of 

cohesion may have a significant effect on the mixing behavior.  Figures 7.7 and 7.8 

illustrate mixing behavior for the square-well and Hamaker models, respectively, 

during a fluidization cycle.  In these snapshots, the particles were assigned colors in 

the left-most image so that the relative particle movement could be observed in the 

other three images.  These simulations were run using the base parameter set 

presented in Table 6.2, with exceptions noted in the figure captions. The square-well 

and Hamaker parameter values used in both figures were matched using the escape-

Fig. 7.6  Hamaker model: Snapshots showing formation of static bed structure at high levels of 
cohesion (A=1x10-10 erg). 
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velocity mapping.  Qualitatively, the nature of the mixing associated with each model 

appears similar. 

 

 

In order to further investigate the nature of mixing in both models, a mixing 

index is used to quantify the extent of mixing [10]. The mixing index used here is 

defined by dividing all the particles in the bed into two “ families”  as seen in Figure 

7.9.  Family 1 includes all the particles that have a height equal to or greater than the 

median particle height for the bed in its initial, packed state (i.e., top half of bed).  

Family 2 includes all the particles with a height less than the median particle height 

(i.e., bottom half of bed).  The mixing index, I, is defined as the ratio of average 

height of all the particles in family 1, 1h , to the average height of all the particles in 

family 2, 2h , as defined below: 

Fig 7.7 Square-Well model: Mixing behavior in simulation (D=5x10-4 erg). 
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Fig 7.8 Hamaker model: Mixing behavior in simulation (A=7.49x10-12 erg). 
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where n1 is the number particles in family 

1, n2 is the number of particles in family 2, 

and yi is the height of the ith particle. For a 

system that remains segregated, the 

mixing index has a value of 3, while a 

perfectly mixed system exhibits a mixing index of 1. In Figure 7.10 the evolution of 

the mixing index over time is shown for several different levels of cohesion using the 

square-well model.  Figure 7.11 displays similar results for simulations using the 

Hamaker model, with input parameters mapped according to the escape-velocity 

criterion.  These figures also show the escape velocity (vij,esc) associated with each 

level of cohesion.  As a rough estimate, the mapping does appear to provide a good 

common ground between the two models. 

Fig. 7.9 Method used to divide particles 
into families for calculation of mixing 
index. 
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7.2.3 Quantitative Comparison: Minimum Fluidization Velocity 

Experimental results have shown that cohesive forces can lead to an increase 

in the minimum fluidization velocity [11-14].  In the current section, the effects of 

cohesion are examined in terms of its influence on the three velocities associated with 

minimum fluidization defined previously (Section 6.4), namely the theoretical 

minimum fluidization velocity ( th,mfU ), the incipient fluidization velocity ( in,mfU ) and 

the defluidization velocity ( df,mfU ).   Both the square-well model and the Hamaker 

model are used to simulate defluidization and fluidization curves, with parameters 

chosen such that both models map to the same escape velocity.  The procedure 

Fig. 7.10 Evolution of mixing index in time for simulations using the square-well cohesion 
model. 
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Fig. 7.11 Evolution of mixing index in time for simulations using the Hamaker model. 
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employed in these simulations is the same as described in Section 6.4.  Namely, the 

fluidized bed starts in the bubbling state and the defluidization cycle is implemented 

first, before the fluidization cycle. 

 The effects of cohesion on the defluidization velocity, theoretical minimum 

fluidization velocity, and incipient fluidization velocity are displayed in Figures 7.12-

7.14, respectively, for simulations using both the Hamaker model and the square-well 

model.  The simulation parameters outlined in Table 6.2 were used in all of these 

simulations.  For each model, three levels of cohesion were implemented using the 

parameters in Table 7.1.  In order to gauge the effectiveness of the mapping, results 

from both models are presented on the same plots as a function of the escape velocity.  

Three replicates were run for each parameter set and the standard deviation of the 

replicates is represented by error bars at each data point.  The simulation of more 

replicates does not lead to a significant decrease in this standard deviation. 

  

The parameter mapping works well for the defluidization velocity, as is 

displayed in Figure 7.12, with results from both cohesion models showing reasonable 

agreement at each escape velocity.  Furthermore, experimental efforts by Wright and 

Raper [11, 14] and simulation efforts by Mikami et al. [15]  and Kobayashi et al. [16] 

Fig. 7.12  Defluidization velocity as a function of cohesive forces for both the Hamaker and 
square-well models. 
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all examined the behavior of the defluidization velocity (as defined in this work in 

Section 6.4).  In each of these efforts an increase in the defluidization velocity was 

observed as the magnitude of cohesion is increased, which is consistent with the 

simulation results presented here (since an increase in escape velocity corresponds to 

an increase in the level of cohesion, as prescribed by A and D).  

Results from the increasing-velocity branch of the fluidization curve are 

presented in Figures 7.13-7.14.  These plots further illustrate the effectiveness of the 

escape-velocity mapping.  However, the mapping exhibits some limitations at the 

higher levels of cohesion.  A comparison of these results to previous experimental 

results, however, is not straightforward.  A review of both experimental and 

simulation studies reveals some ambiguity in the observed behavior of those critical 

velocities.  The general increase in the minimum fluidization velocity with an 

increase in the magnitude of cohesion is consistent with many experimental studies 

[11-14] and simulation studies [15, 16].  These results agree with the results shown 

here. Unfortunately, very few efforts have provided enough detail to determine which 

critical velocity has been measured (theoretical or incipient).  Therefore, it is difficult 

to comment on the validity of the results presented here for the theoretical minimum 

fluidization (Figure 7.13) and incipient fluidization (7.14). 
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7.2.4 Quantitative Comparison: Average Particle Movement 

To further evaluate the effectiveness of the escape-velocity mapping, particle 

displacement over a set time interval is examined, similar to that used by Wang and 

Rhodes  [17].  An extreme example of small displacement is the plugging and 

channeling exhibited by Type C particles. On the other end of the spectrum is a 

vigorous, bubbling fluidization, in which net particle displacement is relatively high.  

The level of particle displacement is calculated by recording the distance moved by 

each particle ( il∆ ) over the time increment 21 tt − : 

( ) ( )2
21

2
21 tttti yyxxl −+−=∆     (7.10) 

Fig 7.14. Incipient minimum fluidization velocity as a function of cohesive forces for both 
cohesion models. 

Fig 7.13. Theoretical minimum fluidization velocity as a function of cohesive force for both 
cohesion models. 
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where 1tx and 1ty are the x- and y-positions of a given particle at time t1, and 2tx and 

2ty are the x- and y-positions of a given particle at time t2.  This quantity is then 

averaged over every particle in the simulation to obtain the average particle 

movement ( avgl∆ ) in the given time increment. 

�
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=
n

i
iavg l

n
l

1

1 ∆∆       (7.11) 

where n is the number of particles in the simulation. The values reported in Figure 

7.15 are also averaged over 30 temporal data collection intervals that each lasts 0.3 

seconds.  These results were taken using the simulation parameters presented in Table 

6.2 and the cohesion parameters presented in Table 7.1.  A time interval of 0.25 

seconds was used to calculate the average movement and each simulation employed a 

constant superficial velocity of 77 cm/s.  Furthermore, the system was allowed to 

come to a steady state before the particle mobility was measured and three replicates 

were run for each case in order to obtain an estimate of the error.  Figure 7.16 

illustrates how the values of the average particle movement show good agreement at 

similar escape velocities, regardless of which cohesion model is used.  

 

 

Fig. 7.15 Average particle movement with both cohesion models compared to escape velocity. 
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7.3 Effect of length scale 

One drawback of the escape-velocity mapping is that it does not account for 

the length scale of the square-well and Hamaker models.  With regard to the square-

well model, changes in the well-width to particle radius ratio (router/rinner) will not 

affect the escape velocity for head-on (normal) collisions. However, changes in 

router/rinner will affect the nature of the collision for oblique impacts, presenting an 

obvious limitation of the escape-velocity mapping as it is used with the square-well 

model.  With regard to the Hamaker model, changes in the cutoff distance (Hcut) will 

affect the head-on escape velocity, however the primary effect of Hcut is to alter the 

magnitude of the constant γ associated with surface adhesion force (equation 6.38).  

Because Hcut is so small, it is expected that changes in Hcut do not significantly affect 

oblique collisions.  Two approaches are taken to assess the effect of the characteristic 

length scale in each model.  First, two-particle simulations are used to directly predict 

the effect calculating the escape velocity for various angles of approach (i.e., oblique 

collisions).  Second, simulations using the square-well model are run with various 

values for router/rinner, and simulations with the Hamaker model are run using various 

values for Hcut.  The results of these simulations are then compared on the basis of 

predicted defluidization velocity and average particle movement. 

Figure 7.16 illustrates the configuration used to determine the effect of 

oblique collisions on the escape velocity.  The escape velocity was measured as the 

minimum relative normal velocity needed to escape agglomeration with the relative 

normal velocity measured just before the first cohesive interaction. 
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Figure 7.17 reports the escape velocity in simulations using the square-well 

model with two different well depths and three different values of router/rinner.  At 

larger router/rinner, the escape velocity varies somewhat, but overall the approach angle 

has little effect on the escape velocity except at very high approach angles.  Similar 

results are obtained for the Hamaker model (with varied Hcut) as displayed in Figure 

7.18.  As stated earlier, varying Hcut will affect the head-on escape velocity, so when 

varying Hcut the Hamaker constant was also varied in order to achieve the same 

Fig. 7.16 Layout of two-particle simulations used to determine effect of square-well width on 
escape velocity. 
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escape velocity for the head-on case.  The parameters used in this plot are 

summarized in Table 7.2. While the Hamaker model shows a significant variation in 

the escape velocity as the approach angle is increased (similar to the square-well 

model), the escape velocity mapping accounts for this dependency. Combinations of 

A and Hcut that result in the same escape velocity for the head-on case (zero approach 

angle), continue to predict the same escape velocity at all approach angles. For both 

Fig. 7.18 Hamaker model: Effect of approach angle on the escape velocity. 
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Table 7.2 Parameter values used in two-particle investigation of oblique collisions. 

Fig. 7.17 Square-Well model: Effect of approach angle on the escape velocity. 
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cohesion models, the escape velocity deviates significantly from the “head-on”  case 

only at very high collision angles.  This deviation is partly due to the increased effects 

of friction as the particles develop a larger component of tangential relative velocity 

at higher approach angles.  Two-particle simulations run without friction (results not 

shown here) displayed a slight decrease in the escape velocity at very large approach 

angles.     

Figure 7.19 shows the effect of router/rinner on average particle movement for 

two different square-well depths. Although there is some variation in the square-well 

results as router/rinner is varied, the results at all router/rinner are relatively close for each 

escape velocity. 

  

The effects of router/rinner on the defluidization velocity are examined in Figure 

7.20.  At both well depths, the defluidization velocity is relatively close for the two 

larger router/rinner.  For the smallest router/rinner, however, the defluidization velocity 

changes significantly.  Changing router/rinner from 1.01 to 1.001 has a clear effect on 

the defluidization velocity. 

Fig. 7.19 Square-Well model: Effect of the router/rinner on the average particle movement.  
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Figure 7.21 displays the effect of Hcut on the predicted defluidization velocity 

in simulations that utilize the Hamaker model.  For reference, the results of 

simulations with higher and lower levels of cohesion are also presented.  These 

results indicate the Hcut  has little effect on the predicted defluidization velocity as 

long as the Hamaker parameters predict equivalent head-on escape velocities. 

 

7.4 Summary of Efforts to Develop Mapping Between Cohesion Models 

Several different methods have been considered as a possible means to map 

cohesion parameter values from the Hamaker model parameters to equivalent square-

well model to parameters.  The escape velocity in a two-particle, head-on collision 

Fig. 7.21 Hamaker model: Effect of Hcut on the defluidization velocity. 
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Fig. 7.20 Square-Well model: Effect of the router/rinner on the defluidization velocity for two well 
widths. 
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appears to provide a good common ground.  The effectiveness of the mapping was 

assessed by examining defluidization behavior, mixing behavior, fluidization 

velocities and average particle movement. When possible, simulation results from 

both models were also compared with experimental trends. 

A possible drawback of this mapping method is that it does not include the 

length scale associated with the cohesion model.  For the square-well model, the 

length scale can be varied by changing the width of the square well.  The average 

particle movement in simulations using the square-well potential does not change 

significantly as the square-well length scale is varied, however the defluidization 

velocity does increase significantly for well a width to inner radius ratio close to unity 

(router/rinner =1.001).  These results indicate that the applicability of this mapping may 

be limited to larger well width to inner radius ratios (router/rinner >1.001).  The 

characteristic length associated with the Hamaker model is controlled by the cutoff 

distance (Hcut).  Two-particle simulations show that sets of Hamaker parameters (A 

and Hcut) that produce equivalent escape velocities for the head-on case, exhibit the 

same escape velocity for all approach angles. This indicates that the escape velocity 

can successfully account for variations in the length scale of the Hamaker model.  

Furthermore, predictions of the defluidization velocity do not vary significantly as 

Hcut is varied with simulations using mapped Hamaker parameters. 
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Chapter 8 Hysteresis in Fluidized Beds of Geldart Type A Particles 

8.1 Relevant Efforts 

As mentioned previously, systems with relatively high levels of cohesion are 

unable to fluidize in a conventional manner. Instead, the bed is characterized by the 

formation of plugs and channels.  Moderate levels of cohesion may have more subtle, 

yet significant, effects on fluidized-bed operation.  For example, one phenomenon 

that is sometimes attributed to mild cohesion is a pressure overshoot that can occur 

during the fluidization process (which is associated with the hysteresis observed 

between fluidization and defluidization cycles).  A better understanding of this 

phenomenon, which is detailed below, is the target of the current effort.   

Tsinontides and Jackson [1] provide a detailed description of the defluidization-

fluidization cycle in their investigation into the range of stable, non-bubbling 

fluidization exhibited by small, light particles (Geldart Type A).  Their effort includes 

experimental measurements and a physically-based model.  In the experiments, the 

fluidized bed started in a bubbling state.  The superficial velocity (Us) was decreased 

in stepwise increments to take the bed through a defluidization cycle into the packed 

state.  The superficial velocity was then increased beyond the point of minimum 

fluidization.   Their experimental results exhibit a pressure overshoot between the 

theoretical (Umf,th) and incipient (Umf,in) minimum fluidization velocities in which the 

pressure drop (∆P) exceeds the total particle weight (W) normalized by the bed cross-

sectional area (Ab). These trends are illustrated in Figure 8.1. 
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Tsinontides and Jackson [1] also examined trends in bed expansion during the 

defluidization-fluidization cycles.  A packed bed structure is observed for all 

superficial velocities below the incipient fluidization velocity, as illustrated in Figure 

8.2.  Once the incipient fluidization velocity is reached, the packed bed expands to a 

fluidized bed rapidly before showing gradual expansion as the gas velocity is 

increased further.  As the gas velocity is decreased from the bubbling state, the bed 

height exhibits a hysteresis with the defluidization height being higher than the 

fluidization height at each gas velocity.   

As sketched in Figure 8.3, the experimental results of Tsinontides and Jackson [1] 

reveal that hysteresis becomes more pronounced as the width of the fluidized bed is 

decreased, indicating that frictional interactions with the sidewalls may be an 

important mechanism in the hysteresis. (The area of the sidewall in contact with the 

particle bed relative to the total particle weight increases as the bed gets smaller,  

whereas the magnitude of cohesive effects does not change relative to the total 

Fig. 8.1 Sketch of fluidization-defluidization cycle showing pressure overshoot. 
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particle weight as long as the bed height is kept constant).  However, their results also 

show the hysteresis is more pronounced when moist air is used, indicating that 

cohesive particle interactions may be an important cause of the hysteresis 

phenomenon.  The final conclusion of the authors is that the hysteresis is due to some 

combination of effects from particle-sidewall friction and particle cohesion.  They 

further note that their inability to independently control frictional and cohesive effects 

within their experimental system restricted the level of insight they could achieve into 

this phenomemon. 

 

 

Jackson [2] further elaborated on the experimental observations of Tsinontides 

and Jackson [1] by presenting a one-dimensional force balance model for the 

defluidization-fluidization cycle in fluidized beds: 
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Fig. 8.2 Sketch of bed expansion behavior during defluidization-fluidization cycle. 
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where y is the axial direction, σs is the cross-sectional average of the yy-component of 

stress associated with enduring particle-particle contacts, Dbed is the width of the 

fluidized bed, µ is the friction coefficient between particles and the walls, j is the 

Janssen constant (a proportionality constant to relate the normal stress on the wall 

with the friction force in the vertical direction), ρs is the particle density, gε is the 

void fraction, β  is the drag coefficient, and Us is the superficial gas velocity. 

  This model, which does not incorporate cohesive effects, predicts a pressure 

overshoot and a jump in bed height at minimum fluidization.  The pressure overshoot 

is attributed to frictional interactions with the walls which are incorporated by the 

second term on the left-hand side of equation 8.1. This term is negative for 

fluidization and positive for defluidization. Furthermore, the dependence of the 

pressure overshoot on bed diameter is inherent in this friction term (overshoot 

decreases as Dbed increases).  Subsequent experimental investigations have yielded 

similar conclusions regarding the relative importance of wall friction [3,4]. 

Experimental results by Srivastava and Sundaresan [3] also exhibit an increase in 

the pressure overshoot as the bed diameter is decreased.  The experimental results 

agree well with the one-dimensional model developed by Jackson [2] in which the 

particle-wall friction coefficient is used as a fitted parameter.  As stated previously, 

this model does not account for cohesive interactions and attributes the pressure 

overshoot exclusively to frictional interactions with the sidewalls.   

Experimental efforts by Loezos et al. [4] also indicate an increase in the pressure 

overshoot as the fluidized bed width is decreased. This effect is again captured by the 

non-cohesive model developed by Jackson [2].  The data further shows that smaller 
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particles (which have a relatively high cohesive-force-to-weight-ratio) exhibit a larger 

pressure overshoot than the larger particles.  Because a different set of fitting 

parameters is used for each type of particle, this model is able to account for this 

dependency without addressing cohesion explicitly.  Based on their results, Loezos et 

al. conclude that frictional interactions between particles and the walls are the 

primary reason for the pressure overshoot.  

 The aim of the current work is to better understand the relative importance of 

the various mechanisms associated with the pressure overshoot.  More specifically, 

the experimental efforts described previously are limited in their ability to 

independently control and measure the contributions to the pressure overshoot (e.g., 

particle friction with walls and particle cohesive force with distributor plate).  Two 

benefits of an Eulerian-Lagrangian simulation are (i) the ability to independently 

control levels of cohesion and friction (i.e., can turn these mechanisms “on” and “off”) 

and (ii) to compare the relative magnitude of each contributing force.  

Correspondingly, Eulerian-Lagrangian simulations of defluidization-fluidization 

cycles were carried out to further explore the pressure-overshoot phenomenon. 

Fig. 8.3 Effect of bed width on the hysteresis in the fluidization-defluidization cycle 
observed experimentally. 
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8.2 Defluidization-Fluidization Cycle via Square-Well Model 

Simulations were run using the square-well model with the parameters 

presented in Table 6.2, unless otherwise stated.  The procedure for each simulation 

was to start at a superficial velocity large enough to produce bubbling, ramp the gas 

velocity down to the packed bed state, and then ramp the velocity back up to the 

bubbling state.  For simplicity, the results presented here only show the fluidization 

cycle (increasing superficial velocity), because the pressure overshoot is not observed 

during the defluidization cycle.   Beds of different diameters were simulated, and the 

number of particles is varied to keep the bed height constant in all simulations (which 

mimics the previous experiments [1,3,4]. The data in these plots represents the 

average of three replicate runs.  Error bars are based on the standard deviation in the 

results. Large error bars on the right side of each plot are due to the bubbling behavior 

displayed at higher superficial velocities.  Figure 8.4 illustrates the effect of cohesion 

predicted by the square-well model.  Simulations run without cohesion (Figure 8.4a) 

show essentially no pressure overshoot, while the addition of cohesion (Figure 8.4b) 

appears to give rise to a significant pressure overshoot. These results indicate that 

cohesion is a factor that leads to pressure overshoot.   
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To gauge the importance of frictional effects, simulations were run with a 

much larger coefficient of friction (µ = 1.0) than that used for Figure 8.4 (µ = 0.3).  

No cohesive forces were implemented.  These results, as displayed in Figure 8.5, 

indicate that an increase in the level of friction does not appear to result in a 

significant pressure overshoot.  Collectively, these results suggest that cohesive forces 

are not only significant, but required, for the pressure overshoot at the conditions 

examined. 

 

   

Fig. 8.4 Square-well model: Normalized fluidization curve (a) without and (b) with cohesion 
(D=5x10-4 erg). 
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Fig. 8.5 Square-Well model: Fluidization cycle with no cohesion (D=0)  (a) typical friction (µ = 
0.3) and (b) a high level of friction (µ = 1.0). 
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A more detailed understanding of effects of cohesion on pressure overshoot is 

possible by considering the three types of cohesive interactions: particle-particle 

cohesion, particle-sidewall cohesion, and particle-distributor-plate cohesion.  In order 

to investigate the significance of each cohesion type, simulations were run in which 

each interaction type is excluded.  These results are presented in Figure 8.6.  When 

comparing these three plots, the pressure overshoot is lowest in simulations that 

exclude particle-particle cohesion (Figure 8.6a).  This finding indicates that particle-

particle cohesive interactions have the strongest influence on the pressure overshoot 

out of the three interactions.  

 

In the context of a macroscopic force balance in the axial direction over the 

bed, this result appears counter-intuitive. Cohesive interactions between particles and 

the distributor introduce an obvious external force on the bed of particles in the axial 

Fig 8.6. Square-Well model: Fluidization curves for cases of (a) no particle-particle cohesion, (b) 
no particle- sidewall cohesion and (c) no particle-distributor-plate cohesion (D=5x10-4 erg). 
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direction. Cohesive interactions between particles and the sidewalls enhance frictional 

interactions, leading to a net external force on the particles in the axial direction. 

However, it is initially unclear in what manner particle-particle cohesion impacts the 

force balance. 

The effects of particle-particle cohesion on the pressure overshoot are partly 

due to the manner in which pressure drop is calculated.  As described in Section 6.2, 

the pressure cannot be calculated at the distributor plate, but only at the computational 

node just above the distributor.  Therefore, when particle-particle cohesion is present, 

the pressure calculated at this node is supporting the particles above it and 

overcoming cohesive interactions between the supported particles and the particles 

below the node, as illustrated in Figure 8.7.  This leads to a pressure drop beyond that 

needed to support the weight of the particles above the lowest computational node.  

 

To determine if the effects of particle-particle cohesive forces are an artifact 

of the numerical methods described in previous paragraph, the net forces on the 

particles from various mechanisms (e.g. particle-distributor-plate cohesion, particle-

Fig. 8.7 Possible mechanism for pressure overshot in simulation with no particle-distributor 
cohesive forces. 
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sidewall friction, particle-wall contact forces, particle-fluid forces, and gravity) were 

examined.  Figure 8.8 displays the net force (in the y-direction) applied to the 

particles from the fluid compared to the net gravitational forces applied to the 

particles (these two forces are comparable in magnitude while the other three listed 

forces are much smaller). This data is from the same three cases considered in Figure 

8.6.  The information in these plots applies to all the particles in the fluidized bed and 

is not complicated by issues associated with pressure drop measurement   (i.e., 

excluded particles below lowest computational node).  In the net-force plots, the only 

case in which the fluid forces exceed the gravitational forces is for excluded particle-

sidewall cohesion (Figure 8.8b).  For the case of excluded particle-distributor 

cohesion (Figure 8.8c), the fluid forces just equal the gravitational forces at the point 

Fig. 8.8 Square well model: Net forces imposed on the particle from the fluid and gravity for the 
case of (a) no particle-particle cohesion, (b) no particle-sidewall cohesion, and (c) no particle-
distributor cohesion (D=5x10-4 erg). 
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of minimum fluidization.  Finally, for the case of excluded particle-particle cohesion 

(Figure 8.8a), the fluid forces are less than the gravitational forces at all times.  

Comparing the data in Figures 8.6 and 8.8 leads to two general conclusions. 

First, the low fluid force in the simulations that exclude particle-particle cohesive 

forces (Figure 8.8a) illustrates that the effect of particle-particle cohesive forces on 

the pressure overshoot is not just an artifact of the numerical methods.  The exact 

nature in which these interparticle forces can lead to a net effect on overall bed will 

be discussed at the end of this section.   The second conclusion that can be drawn 

from these results is that cohesive interactions with the distributor plate have a larger 

effect on the pressure overshoot than cohesive interactions with the sidewalls.  This 

conclusion is based on the results in Figures 8.8b and 8.8c.  The fluid imposes a 

larger force on the particles in simulations that excluded particle-sidewall cohesive 

interactions (Figure 8.8b) than in simulations that excluded particle-distributor 

cohesive interactions (Figure 8.8c).  This physical description of the system is further 

supported by an examination of the net forces observed in a simulation with no 

cohesive interactions excluded (i.e., all cohesion interactions are present).  Figure 8.9 

presents the force imposed on the particles from the fluid compared to the net 

gravitational force for the same operating parameters as used in Figures 8.4b.  These 

results show fluid forces in excess of the gravitational force, consistent with the 

pressure overshoot displayed in Figure 8.4b.  Figure 8.10 reports the net force 

imposed on the particles by cohesive interactions with the distributor and the net 

force imposed by frictional interactions with the sidewalls (cohesive interactions with 

the sidewalls have no y-component and only serve to enhance the frictional forces in 
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the y-direction with the sidewalls). Figure 8.10 shows a distinct negative spike in the 

net force from cohesive interactions with the distributor at the point of incipient 

fluidization.  The frictional forces from the sidewalls (which may be enhanced due to 

cohesive interactions with the sidewalls) are much smaller in magnitude.  

 

The mechanisms through which particle-particle cohesive forces cause a 

change in the net fluid forces at incipient fluidization (Figure 8.7a) can be explained 

in the context of Jackson’s one-dimensional, force balance model (Equation 8.1) [2].  

According to Jackson, the fluidization process involves a gradual decrease in the 

normal stress at the base of the bed as the fluid drag force increases with an increase 

in superficial velocity, as sketched in Figure 8.11.  As the superficial velocity 

Fig. 8.9 Square-well model: Net force imposed on the particles by fluid forces and gravity with no 
excluded cohesive interactions (D=5x10-4 erg). 
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Fig. 8.10 Square-well model: Net force imposed on the particles by  cohesive interactions with the 
distributor and frictional interactions with the sidewalls (D=5x10-4 erg). 
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continues to increase, it will eventually reach a critical velocity at which the stress has 

been decreased to the yield point for dilation.  In Jackson’s model, the yield stress for 

dilation is zero and only frictional interactions with the sidewalls oppose bed 

expansion once the critical velocity is reached.  However, Jackson notes that cohesive 

forces could lead to a nonzero (negative) yield stress. He also notes that the 

incorporation of such a tensile yield stress would allow the force balance model to 

predict the pressure overshoot without the inclusion of frictional interactions with the 

walls.  Thus, the effects of particle-particle cohesion on the pressure drop predicted 

by the discrete-particle simulation are consistent with the model presented by Jackson. 

 

 

8.3 Defluidization-Fluidization Cycle via Hamaker model 

While the results shown in Figures 8.1-8.10 were obtained using the square-

well cohesion model, similar simulations can be performed using the Hamaker model 

Fig. 8.11 Sketch of normal stress behavior during fluidization cycle. 
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for van der Waals forces.  Figure 8.12 shows that the pressure overshoot exists in 

simulations using the Hamaker model, although it is somewhat less pronounced than 

the pressure overshoot predicted with the square-well model (Figure 8.4). 

 

These results are again examined by excluding certain interactions.  Figure 8.13 

shows the resulting fluidization curves when particle-particle (Figure 8.13a), particle-

sidewall (Figure 8.13b) and particle-distributor (Figure 8.13c) cohesive forces are 

excluded.  Unlike with the square-well model, the pressure overshoot does not change 

significantly in these plots.  However, the duration of the pressure overshoot region is 

somewhat shorter for the case of excluded particle-particle cohesion (Figure 8.13a).   

This system was analyzed further by recording the net forces from various 

interaction mechanisms as described in the previous section.  Figure 8.14 displays the 

net force imposed on the particles from fluid forces and gravity for the same three 

cases examined in Figure 8.13.  These plots show that the force exerted by the fluid 

on the particles does not exceed the gravitational forces in any simulation. However, 

the largest fluid force was attained for the case of excluded particle-distributor 

cohesion forces.  These results indicate that particle-distributor cohesive forces 

Fig. 8.12 Hamaker model: Normalized fluidization curve (a) without and (b) with cohesion (A = 
7.49 x 10-12 erg). 
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provide the least resistance to fluidization in simulations using the Hamaker model.  

Furthermore, it appears that the combination of particle-particle cohesive forces and 

particle side-wall cohesive forces have a significant effect.  This conclusion is further 

supported by examining the net force from frictional interactions with the sidewalls.  

 

Figure 8.15a displays the net force imposed on the particles by frictional 

interactions with the sidewalls.  These results show that there is a significant negative 

force from frictional interactions with the sidewalls near the point of incipient 

fluidization. Cohesive forces between particles and the distributor plate do not have a 

significant effect.  For the Hamaker model, these forces are actually much larger in 

magnitude than the frictional forces with the wall. However, due to the nature of the 

Hamaker model, these forces are only significant when the particles are touching the 

Fig 8.13 Hamaker model: Fluidization curve for cases of (a) no particle-particle cohesion, (b) no 
particle sidewall cohesion and (c) no particle-distributor cohesion (A=7.49x10-12 erg). 
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distributor plate.  Correspondingly, these forces lead to a larger overlap with the 

distributor plate, which gives rise to a larger repulsive contact force than would have 

been generated in the absence of cohesive forces.  The end result is that the forces 

between particles and the distributor plate do not produce a net downward force on 

the bed as shown in Figure 8.15b.  

 

While the enduring nature of the contacts in the Hamaker model leads to a 

minimal net attraction with the distributor plate, it does lead to a significant 

enhancement of frictional forces with the sidewalls.  The Hamaker model keeps 

particles in direct contact with the sidewalls. Because the particles are in contact with 

the sidewalls longer, frictional forces have a longer duration.  The end result is 

Fig. 8.14 Hamaker model: Net forces imposed on the particle from the fluid and gravity for the 
case of (a) no particle-particle cohesion, (b) no particle-sidewall cohesion, and (c) no particle-
distributor cohesion (A=7.49x10-12 erg). 
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that the Hamaker model enhances frictional contacts with the sidewalls to a larger 

extent than the square well model (approximately two times larger in Figure 8.15 than 

Figure 8.10).  The impulsive nature of the square-well model likely leads to a higher 

frequency of collisional contacts with the walls, but it does not lengthen the duration 

of each contact and does not affect this mechanism as significantly as the Hamaker 

model.  Although both models are able to predict the pressure overshoot, the 

responsible mechanism is different based on simulation results. 

 

Fig. 8.16 Hamaker model: Net force imposed on the particles by fluid forces and gravity with no 
excluded cohesive interactions (A=7.49x10-12 erg). 
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Fig 8.15 Hamaker model: (a) Net force imposed on the particles from frictional interactions with 
the sidewalls (b) sum of normal contact force and cohesive force  from distributor plate 
(A=7.49x10-12 erg). 
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8.4 Square-Well and Hamaker Model:  Effects of bed width on pressure 

overshoot 

 A key result in the experimental efforts discussed in Section 8.1 is an increase 

in the pressure overshoot as the bed width is decreased. Figure 8.17 displays the 

pressure overshoot at two different bed widths for simulations using the square-well 

model, and shows that the pressure overshoot does not appear to vary significantly 

with bed width.  Figure 8.18, on the other hand, indicates that the level of pressure 

overshoot does vary slightly with bed width for simulations using the Hamaker model.  

Specifically, a decrease in the pressure overshoot is observed as the bed width is 

increased, which is consistent with previous experiments [1, 3, 4].   

 

An explanation for the dependency of the pressure overshoot on bed width via 

the Hamaker model and lack of dependency with the square-well model is possible by 

considering the mechanisms responsible for pressure overshoot in each model.  

Fig 8.17. Square-well model: Pressure overshoot fluidized beds with widths of 4cm and 12cm 
(D=5.0x10-4 erg). 
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As described earlier, cohesion between the particles and distributor plate has a 

significant effect on the pressure overshoot in simulations employing the square-well 

potential.  This force is plotted in Figure 8.19 for two different bed widths, in which 

the force is normalized by the total weight of particles in the bed (note that the y-axis 

sizes are on different scales).  The normalized net force from cohesive interactions 

between particles and the distributor plate does increase slightly as the bed width is 

increased, but this increase is not large enough to have a significant effect on the 

overall pressure drop.  

 

Fig 8.18 Hamaker model: Pressure overshoot for fluidized beds with widths of  4cm and 12cm 
(A=7.49x10-12 erg). 
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Fig 8.19 Net force applied to the particles from frictional sidewall interactions and cohesive 
interactions with the distributor plate when using the square well model for fluidized beds with 
widths of (a) 4cm and (b) 12 cm.   
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Frictional interactions with the sidewalls have a significant effect on the 

pressure overshoot in simulations using the Hamaker model (see Section 8.3).  If the 

bed height is kept constant as the bed width is varied, the sidewall area (the portion in 

contact with the particles) will also stay constant (for this two-dimensional 

simulation).  With a constant wall area, the net force from frictional sidewall 

interactions will also remain constant, even if the total number of particles changes.  

Figure 8.20 illustrates how the net dimensionless force from frictional side-wall 

interactions (normalized by the total particle weight) increases as the bed width is 

decreased.  The constant level of frictional force combined with a decreasing number 

of particles (weight) leads to an increase in the pressure overshoot as the bed width is 

decreased. This increase in the dimensionless sidewall force is much more significant 

than the increase in distributor forces observed with the square-well model. 

  

It is important to note that these results are specific to a two-dimensional 

system.  In a two-dimensional system of constant bed height, the number of particles 

decreases directly proportional to the bed radius, while the wall area (sidewall area in 

Fig 8.20 Net force applied to the particles from frictional sidewall interactions when using the 
Hamaker model for fluidized beds with widths of (a) 4cm and (b) 12 cm.   
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contact with particles ) remains constant as the bed radius varies. Therefore the ratio 

of sidewall area to number of particles will be inversely proportional to the bed width 

for a two-dimensional system.  In a three-dimensional (cylindrical) system (as was 

used in previous experiments), for a constant bed height, the number of particles will 

decrease with the square of the bed radius, while the sidewall area will decrease 

directly proportional to the bed radius.  Therefore, the ratio of sidewall area to 

number of particles will be inversely proportional to the bed radius for a three-

dimensional system, just as it is for a two-dimensional system. This ratio behaves the 

same in both systems despite the fact that the wall area varies with the bed radius for 

a three-dimensional system and is constant for a two-dimensional system.  These 

findings add to the validity of the simulation results developed here and alleviate 

concerns that the results may simply be an artifact of the two-dimensional system.  

Furthermore, these results with the Hamaker model, showing a pressure overshoot 

that increases as the bed width is decreased, are consistent with the experimental 

results reviewed in Section 8.1.  

In addition to the effects of bed width captured by the Hamaker model, both 

models capture the effects of increasing levels of cohesion noted by Loezos et al. [4].  

Their results show that as the particle size is decreased (thus increasing the effects of 

friction relative to the particle weight) the magnitude of the pressure overshoot 

increases.  Figure 8.21 illustrates the effects of different levels of cohesion predicted 

by both models, with the level of cohesion represented by the escape velocity 

introduced in Chapter 7.  The model used by Leozos et al. [4] was able to predict this 
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increase in the pressure overshoot, but only by increasing the friction coefficient as 

the particle size decreased. 

 

8.5 Summary of results  

The results with the square-well cohesion model and the Hamaker model for 

van der Waals forces present two different physical pictures of the fluidization cycle.  

Both models show that particle-particle cohesive forces have a significant effect on 

the pressure overshoot.  Furthermore, the square-well model predicts that cohesive 

interactions between particles and the distributor plate affect the pressure overshoot.  

The Hamaker predicts shows that cohesive interactions between particles and the 

distributor plate have little effect on the pressure overshoot, but that cohesive 

interactions with the sidewalls do have a significant effect.   

The results of the Hamaker model (decreasing pressure overshoot as bed 

width is increased) are in better agreement with experimental results.  Furthermore, 

the Hamaker model provides a more elaborate description of particle cohesion than 

the square-well model, leading to more confidence in the results of the Hamaker 

model over the results of the square-well model.  However, this finding does not 

Fig. 8.21 Effect of increased cohesion levels on the normalized pressure overshoot. 
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completely invalidate all results of the square-well model. The results presented here 

and in Chapter 7 indicate areas in which both models predict similar results and areas 

in which their results diverge. 

The noted effects of particle-particle cohesion in both models are significant.  

Previous one-dimensional force balance models of the fluidization process are 

capable of predicting the pressure overshoot without the inclusion of cohesion. 

However, the success of these models depends largely on numerous empirical fitting 

parameters.  The results from this effort indicate that those one-dimensional force 

balance models should also include cohesive forces.  In future efforts, it may be 

possible to include cohesion in the form of a limiting tensile stress as suggested by 

Jackson [2]. 
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Chapter 9 Summary 
 

 The effects of cohesion have been investigated in both granular and gas-solid 

flows via discrete-particle simulations.  The capability of the square-well model to 

capture the effects of mild cohesion between particles has been assessed. The square-

well model is a candidate for incorporating cohesion into continuum models since 

cohesion is treated as impulsive events that that do not violate the assumption of 

binary, instantaneous contacts inherent in kinetic-theory models. The key conclusions 

and implications of both studies are summarized below. 

 

9.1 Summary of Results  

9.1.1 Cohesive Granular Flows 

 Simple, two-particle simulations show that an analytical expression for an 

effective coefficient of restitution (that incorporates the effects of cohesion and 

inelastic collisions) is only accurate within the limit for which it was derived.  More 

specifically, the analytical expression accurately describes the effects of the square-

well model only as the width of the cohesive well approaches the particle radius.  

However, as the well width is increased, the coefficient of restitution obtained from 

the analytical expression diverges from that determined via simulation.   

The implementation of the square-well model into many-particle systems 

undergoing simple shear flow indicates that two drastically different flow regimes 

exist.  At relatively high levels of cohesion, large agglomerates form that incorporate 

most of the particles in the simulation domain.  At moderate levels of cohesion, the 

particles form mostly two- and three-particle agglomerates.  This abrupt change in the 
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flow regime is reminiscent of the marked change in gas-solid fluidization behavior 

observed between Geldart Type A and Type C particles [1].  Furthermore, for 

systems with moderate levels of cohesion, the addition of cohesion has little influence 

on the stress obtained in simulations at low solids fractions (kinetic regime).  

However, at higher solids fractions (collisional regime), the addition of cohesion 

results in a decrease in the magnitude of all components of the stress tensor. 

The behaviors predicted by the square-well model are in qualitative agreement 

with those expected for cohesive granular systems.  As the next step in the assessment 

of the square-well potential, the cohesion model was incorporated into a simulation of 

gas-solid flow and compared with the results of a more elaborate cohesion model.   

 

9.1.2 Cohesive Gas-Solid Flows 

Cohesive forces were incorporated into discrete-particle models for gas-solid 

fluidized beds using both the square-well model and the Hamaker model for van der 

Waals forces. This task was accomplished within the framework of the MFIX code 

developed at DOE NETL (www.mfix.org). Both the square-well and Hamaker 

models capture the transition from Geldart Type A to Geldart Type C fluidization 

behavior. In both models, plugging and channeling is observed at relatively high 

levels of cohesion.  However, the nature of the plugs and channels is different within 

the two models. Within the square-well model, rigid plugs rise in the bed as a single 

mass, and within the Hamaker model, plugs are more likely to break apart into multi-

particle agglomerates. Simulation results from both models consistently display an 

increase in the minimum fluidization velocities (Umf,in, Umf,th, and Umf,df) as the level 
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of cohesion is increased.  This trend is consistent with a general increase in minimum 

fluidization velocity that has been observed experimentally [2-4]. Although most 

experimental efforts do not provide the detail necessary for determining which of the 

three critical velocities defined here is being measured.  

A mapping between the two cohesion models was developed using the two-

particle escape velocity for particles undergoing head-on (normal) collisions. 

Simulations with parameters that produced equivalent two-particle escape velocities 

were implemented to test the mapping effectiveness. Simulation results were 

compared via simulation snapshots, animations, and measurements of the mixing 

index, fluidization velocity, and average particle movement. This analysis reveals that 

the escape velocity provides a suitable common ground between the two cohesion 

models.  The importance of this mapping lies in the ability to convert Hamaker 

constants, which have been measured for many materials, into the square-well depth, 

for which there is no experimental data.  The effects of the length scales in both 

cohesion models were also investigated and found to have a minimal impact on the 

influence of cohesion in many-particle simulations. 

The square-well model and the Hamaker model were also used to study the 

phenomenon of pressure overshoot, which has been documented experimentally [5-7].  

Pressure overshoot occurs during the fluidization cycle when pressure drop exceeds 

the weight of the particles in the bed divided by the cross-sectional area of the bed.  

During a simulation of the fluidization cycle (after a defluidization cycle), the net 

force imposed on the particles by several interactions was collected.  Also, specific 

interactions (e.g., cohesive particle-particle, cohesive particle-sidewall, cohesive 
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particle-distributor plate) were systematically removed from the simulation in order to 

assess their impact on the overall system.    Simulations using both models are able to 

predict the pressure overshoot. Furthermore, the simulations indicate that pressure 

overshoot can be traced predominantly to cohesive forces. This finding adds a new 

level of understanding to a fluidization phenomenon that previously been attributed 

vaguely to the combined effects of friction and cohesion. Cohesive interactions with 

the sidewalls and distributor plate also had a less significant effect on the pressure 

overshoot, depending on the model.   In simulations using the square-well model, 

cohesive interactions between the particles and the distributor were more significant 

than interactions with the sidewalls, while in simulations using the Hamaker model 

cohesive interactions with the sidewalls had slightly more influence than cohesive 

interactions between particles and the distributor plate.  Simulations employing the 

Hamaker model also predict an increase in the pressure overshoot as the bed width is 

decreased, while the square-well model simulations do not.  Previous experimental 

results found that the pressure overshoot increases as the bed width is decreased [5-8].  

These results reaffirm that the Hamaker model is a more complete description of 

cohesive forces in particulate flow.   

  While these results illustrate some drawbacks of the square-well model, it has 

still been shown to be a useful tool in many situations. As mentioned previously, the 

square-well model successfully predicts the correct trends in the minimum 

fluidization velocity and provides an adequate depiction of the transition from Geldart 

Type A behavior to Geldart Type C behavior.   Furthermore, the impulsive nature of 
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the square-well model makes it applicable to kinetic theory, while the Hamaker 

model is not.  

These results provide support for the square-well potential as an effective means 

of incorporating cohesion into continuum models, which are needed for application to 

industrial-size systems (since the number of particles in such systems is too large to 

handle via a discrete-particle simulation).  Also, these results illustrate the potential of 

the Eulerian-Lagrangian method as a tool for obtaining insight into experimental 

systems.  However, this method does have its limitations, one of which is discussed in 

the next section. 

 

9.2 Limitations of Eulerian-Lagrangian Method 

  Despite the benefits offered by Eulerian-Lagrangian simulations in the study 

of fluidized systems, this method is not expected to be applicable to situations 

involving the fluidization of highly cohesive particles (Type C). In particular, 

agglomerate fluidization of Type C particles is a fluidized-bed phenomenon that 

pushes the limits of the Eulerian-Lagrangian method. 

Typically, high levels of cohesion prevent Type C particles from fluidizing in 

a conventional manner. In some cases, however, low-density Type C particles 

combine to form agglomerates that are larger and less dense than the primary 

particles.  These agglomerates are capable of fluidization at a gas velocity above the 

minimum fluidization velocity for the primary particles [9-14].  These agglomerates 

consist of several hundred particles, with substantially different fluidization 

characteristics compared to those of the primary particles.   



 163 

 The ability of the Eulerian-Lagrangian method to simulate these systems is 

hindered by the spatial resolution associated with solving the fluid-phase balances.  

The closely-packed nature of agglomerates causes differences in the fluid forces 

imposed on particles at the surface of the agglomerate relative to particles inside the 

agglomerate.  In the Eulerian-Lagrangian approach, however, all particles in a given 

computational cell experience the same fluid velocity. The computational cell size 

must be large enough to include approximately 20 particles in order to calculate 

statistically representative local, solid-phase properties (i.e., average solid velocity, 

void fraction).  With computational cells this large, a single cell is expected to contain 

a significant portion of an agglomerate.  Because all particles within the cell are 

exposed to the same fluid velocity, particles on the surface of the agglomerate 

experience the same fluid drag force as those in the agglomerate interior.  However, 

the drag on interior particles should be substantially less than the drag on particles at 

the surface of the agglomerate due to the reduced gas velocity in the agglomerate 

interior.  Hence, the limiting spatial resolution of the fluid phase solution hinders the 

ability of the Eulerian-Lagrangian method to effectively predict the behavior of 

agglomerating fluidized beds. 

 

9.3 Recommendations for Future Work 

 Building on the results presented here, additional phenomena could be studied 

via minor modifications to the existing cohesive Eulerian-Lagrangian simulation.  A 

liquid-bridging model can be incorporated into the existing cohesion models to study 

the effects of liquid-bridges [15].  Vibrating sidewalls can also be added to study 
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mechanical flow initiation [16-20].  Gravitational forces can be enhanced to simulate 

centrifugal fluidized beds [21].   

Another clear direction for future work is the improvement of continuum 

models for multi-phase flow.  The primary motivation for using a discrete-particle 

model in this effort is the ease in which cohesion can be applied to discrete particles.  

However, as described in Chapter 1, the impulsive nature of the square-well model 

facilitates the incorporation of cohesion into continuum models.  This work has 

shown that the square-well model provides an adequate description of cohesive 

interactions particulate systems. A logical next step would be to incorporate the 

square-well model to a continuum (kinetic-theory) model.  Although a continuum 

model may be limited by the spatial resolution needed to study agglomerating 

systems, such a model would be useful in describing systems with mild cohesion (e.g., 

Type A particles). 

A possible means of studying agglomerating systems would be the 

incorporation of these cohesion models in direct numerical simulations (DNS), which 

were alluded to in Chapter 5.  These models currently would not be able to simulate 

full fluidized bed systems due to computational limitations, however the simulation of 

smaller systems (~10 particles) could provide relevant insight into nature of gas flow 

around and through mutli-particle agglomerates.  A simulation such as this would not 

be constrained by the limitations of a computational grid size and could be used to 

test the effectiveness of existing models [11-13, 22] for agglomerate size. 
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Nomenclature 

ia
�

  Acceleration of ith particle (m s-2) 

i,xa   x-component of acceleration of ith particle (m s-2) 

i,ya   y-component of acceleration of ith particle (m s-2) 

A   Hamaker constant (N m) 

bA   Cross-sectional area of fluidized bed (m2) 

jetA   Cross-sectional area of inlet jet (m2) 

LEA   Area of Lees-Edwards periodic domain in granular flow model (m2) 

oB   Constant 

oC   Constant 

pd   Particle diameter (m) 

D   Depth of cohesive square well (J) 

*D   Dimensionless well depth 

bedD   Fluidized bed width as used in model by Jackson (m) 

e   Coefficient of restitution 

innerouter rr,effe =  Effective coefficient of restitution derived for ideal case of router=rinner 

E   Elastic (Young’s) Modulus (N m-2) 

f   Sound frequency (s-1) 

cF   Magnitude of cohesive force between two particles during soft-sphere 

interactions (N) 

i,cohF
�

  Sum of all cohesive forces on ith particle (N) 
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i,collF
�

  Sum of all collisional forces on ith particle (N) 

ij,collF
�

  Collisional force between ith and jth particle (N) 

i,dF
�

   Drag force on force on ith particle (N) 

i,fF
�

  Sum of all fluid forces on ith particle (N) 

i,gF
�

  Gravitational force on ith particle (N) 

gsF   Drag coefficient (kg m-3 s-1) 

iF
�

  Sum of all forces on ith particle (N) 

Hz,nF
�

  Repulsive force from Hertzian model (N) 

ij,nF   normal collision force between ith and jth particles (N) 

i,pF
�

  Pressure force on ith particle (N) 

ij,tF   tangential collision force between ith and jth particles (N) 

vdWF   van der Waals cohesive interparticle force (N) 

wall,vdWF  van der Waals cohesive particle-wall force (N) 

i,xF   x-component of net force on ith particle (N) 

i,yF   y-component of net force on ith particle (N) 

h   Height of fluidized bed (m) 

1h   Average height of particles in top half of bed for calculation of mixing 

index (m) 

2h   Average height of particles in bottom half of bed for calculation of 

mixing index (m) 
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H   Surface-to-surface separation distance for Hamaker model (m) 

cutH   Cutoff distance for Hamaker van der Waals model (m) 

1H   Initial separation distance for potential energy calculation (m) 

2H   Final separation distance for potential energy calculation (m) 

i
�

  Unit vector pointing in x-direction 

gsI
�

  Momentum transfer between gas and solid phase (kg m-2 s-2) 

j
�

  Unit vector pointing in y-direction 

*J    Momentum impulse transferred during inelastic collision or cohesive 

interaction (kg m s-1) 

inJ   Momentum impulse transferred during inelastic collision (kg m s-1) 

coh,appJ   Momentum impulse transferred during approaching-cohesive 

interaction (kg m s-1) 

coh,escJ   Momentum impulse transferred during escaping-cohesive interaction 

(kg m s-1) 

coh,capJ   Momentum impulse transferred during capture-cohesive interaction 

(kg m s-1) 

ijk
�

  normal unit vector (granular flow equations) 

1,ijk
�

  normal unit vector at point of instance of approaching cohesive 

interaction 

2,ijk
�

  normal unit vector at instance of physical contact 

3,ijk
�

  normal unit vector at instance of departing cohesive interaction 

ij,nk
�

  normal unit vector between centers of ith and jth particles 
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ij,tk
�

  Tanget unit vector between surfaces of colliding ith and jth particles 

nK   normal spring constant for particle-particle contacts (stiffness) (N m-1) 

wallnK −   normal spring constant for particle-wall contacts (stiffness) (N m-1) 

hz,nk   Hertzian force constant (N*m-3/2) 

tK   tangential spring constant for particle-particle contacts (N m-1) 

walltK −   tangential spring constant for particle-wall contacts (N m-1) 

L   width of periodic domain in granular flow simulation (m) 

avgl∆   average particle movement (m) 

il∆   distance moved by ith particle over a specified time interval (m) 

m   particle mass (kg) 

maxm   Number of computational cells in the x-direction 

n   total particles in fluidized bed simulation 

k,aggn   Number of agglomerates at kth snapshot 

i,coln    Number of particles in contact with the ith particle at a given time step 

escn   Number of escaping cohesive interactions 

ijn   Number of particles in cell i, j 

jetsn   Number of inlet jets 

maxn   Number of computational cells in the y-direction 

agg,sn   Number of snapshots used in calculating averaged agglomerate 

properties 

1n    Total particles in family 1 for calculating mixing index 
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2n    Total particles in family 2 for calculating mixing index 

N   Total particles in granular flow simulation 

p   Pressure generated by sound wave (Pa) 

refp   Reference pressure for calculation of SPL (20 µPa) 

P   Average number of particles per agglomerate 

P∆   Pressure drop across fluidized bed (Pa) 

*P∆   Pressure drop divided by theoretical weight per unit area 

P∇
�

  Gradient in fluidized bed pressure (Pa/m) 

k,iP   Number of particles in the ith agglomerate at kth snapshot 

overP∆   Pressure overshoot (Pa) 

innerr   Physical particle radius (m) 

ir∆   movement of ith particle over a given time span (m) 

router  width of square well (m) 

R   Center-to-center separation distance between two particles (m) 

s   Strain (m2) 

lats   Laterial strain 

longs   Longitudinal strain 

gS   Gas-phase stress tensor (N m-2) 

sS   Solid-phase stress tensor (N m-2) 

ct   Collision duration for soft-sphere interaction (s) 

t∆   Time interval used to calculate collisional stress (s) 
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aggt   Time at which a given particle is captured by its first agglomerate 

partner (s) 

aggt∆   Agglomerate duration (s) 

aggt∆   Averaged agglomerate duration (s) 

i,aggt∆   Agglomerate duration of ith escaped particle (s) 

crt∆   critical time step based on given spring constant (s) 

dct∆   Data collection interval for stress calculation in granular flow 

simulation (s) 

esct   Time at which a given particle escapes from its last agglomerate 

partner (s) 

 

ft∆   Time step for gas phase (s) 

kt∆   Collision time at kth snapshot (used in averaging agglomerate 

properties) (s) 

mt   Time at maximum particle overlap in soft-sphere interaction (s) 

st∆   Time step for particle phase (s) 

T   Granular Temperature (m s-1)2 

*T   Dimensionless Granular Temperature  

sU   Superficial gas velocity in fluidized bed (m/s) 

*
sU   Normalized superficial gas velocity ( ( )cohesivenon,th,mfs U/U − ) 

df,mfU   Defluidization velocity (m/s) 
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*
dr,mfU   Defluidization velocity normalized by defluidization velocity for non-

cohesive case  

in,mfU   Incipient fluidization velocity (m/s) 

*
in,mfU   Incipient fluidization velocity normalized by incipient fluidization 

velocity for non-cohesive case  

th,mfU   Theoretical minimum fluidization velocity (m/s) 

*
in,mfU   Theoretical minimum fluidization velocity normalized by theoretical 

minimum fluidization velocity for non-cohesive case 

v   Volume of particle (m3) 

iv   Volume of the ith particle (m3) 

mn,gv
�

  Gas velocity in computational cell m, n (m s-1) 

iv
�

  Velocity of ith particle (m s-1)  

ijv
�

  relative velocity between ith and jth particle (m s-1) 

a,ijv
�

  relative velocity before approaching cohesive interaction (m s-1) 

b,ijv
�

  relative velocity before inelastic collision (m s-1)  

c,ijv
�

  relative velocity after inelastic collision (m s-1) 

d,ijv
�

  relative velocity after departing cohesive interaction (m s-1) 

esc,ijv   Minimum normal, relative velocity needed to escape cohesive forces 

(m s-1) 

post,iv
�

  Velocity of ith particle after hard-sphere collision (m s-1) 
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pre,iv
�

  Velocity of ith particle before hard-sphere collision (m s-1) 

ij,nv
�

  Normal component of relative velocity between ith and jth      

particle(m s-1) 

ov   Initial relative velocity between two contacting particles (m/s) 

sv
�

  Locally-averaged solids velocity (m s-1) 

mn,sv
�

  Average solid velocity in cell m, n (m s-1) 

ij,tv
�

  tangential relative velocity (slip velocity) (m s-1) 

i,xv   Velocity of ith particle in the x-direction (m s-1) 

i,xv′   Random component of velocity of ith particle in the x-direction (m s-1) 

i,xv   Bulk-flow component of velocity of ith particle in the x-direction (m s-

1) 

i,yv   Velocity of ith particle in the y-direction (m s-1) 

i,yv′   Random component of velocity of ith particle in the y-direction (m s-1) 

i,yv   Bulk-flow component of velocity of ith particle in the y-direction (m s-

1) 

i,yv   y-component of velocity of ith particle (m s-1) 

xv∆   Relative velocity between two particles in x-direction (m) 

yv∆   Relative velocity between two particle in y-direction (m) 

mnV   Volume of grid cell m, n (m3) 

jetV   Specified y-component of gas velocity at inlet jet (cm/s) 
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tV   Terminal Velocity (m s-1) 

W   Weight of particles in fluidized bed (N) 

thW   Theoretical Weight of particle bed  (excluding particles below lowest 

pressure node) (N) 

ix   x location of ith particle (m) 

x∆   Displacement of particle centers in x-direction (m) 

ix∆   movement of the ith particle in a given time step in the x-direction (m) 

maxx   Width of fluidized bed (m) 

iy   y location of ith particle (m) 

y∆   Displacement of particle centers in y-direction (m) 

iy∆   movement of the ith particle in a given time step in the y-direction (m) 

maxy   Height of fluidized bed (m) 

δ   Particle offset in two-particle simulations (m) 

ij,nδ   Normal overlap between the ith and jth particles (m) 

max,nδ   Maximum normal overlap during soft-sphere collision (m) 

ij,tδ   tangential overlap (m) 

gε   Locally-averaged void fraction  

sε   Locally-averaged solids volume fraction 

mn,sε   Solids volume fraction in cell m, n 

D,g 2ε   2-dimensional void fraction based on discs in a plane 

D,g 3ε   3-dimensional void fraction obtained from correction equation 
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φ   Solids area fraction in granular flow simulation 

Φ   Potential energy from cohesion forces (J) 

vdWΦ   Potential energy due to attractive van der Waals forces (J) 

γ   Shear rate in granular flow simulation (s-1) 

nη   normal damping coefficient for particle-particle contacts(N s m-1) 

walln−η   normal damping coefficient for particle-wall contacts(N s m-1) 

tη   tangential damping coefficient for particle-particle contacts (N s m-1) 

wallt−η   tangential damping coefficient for particle-wall contacts (N s m-1) 

µ   friction coefficient for particle-particle contacts 

gµ   gas viscosity (kg s-1 m-1) 

wallµ   friction coefficient for particle-wall contacts 

gρ   gas density (kg m-3) 

sρ   particle density (kg m-3) 

σ   Stress (within a solid body) (N m-2) 

ijτ    ij-component of total stress (collisional + kinetic) (m s-2) 

*
ijτ   ij-component of total stress (m s-2) 

)col(ijτ    ij-component of collisional stress (m s-2) 

)kin(ijτ   ij-component of kinetic stress (m s-2) 

*
app,ijτ   portion of ij-component of collisional stress coming from approaching-

cohesive interactions (dimensionless) 

*
esc,ijτ   portion of ij-component of collisional stress coming from escaping-

cohesive interactions (dimensionless) 
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*
cap,ijτ   portion of ij-component of collisional stress coming from capture-

cohesive interactions (dimensionless) 

*
inl,ijτ   portion of ij-component of collisional stress coming from inelastic 

collisions (dimensionless) 

υ   Poisson’s ratio 

iω   rotation rate of ith particle (radians s-1) 
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Appendix A. Derivation of Effective Coefficient of Restitution 

When considering a binary, instantaneous collision between two inelastic, 

smooth discs, with positions ( )ii y,x , ( )jj y,x  and velocities ( )yixi v,v  , ( )yjxj v,v , the 

following quantities define the relative positions and velocities of the two particles: 

ij xxx −=∆   (A1) 

ij yyy −=∆   (A2) 

xjxix vvv −=∆   (A3) 

yjyiy vvv −=∆   (A4) 

( ) ( )22 yxR ∆∆ +=  (A5) 

jvivv yxij

��� ∆∆ +=  (A6) 

The unit normal vector that points from the center of particle i to the center of particle 

j is given by: 

j
R

y
i

R

x
k ij

��� ∆∆ +=  (A7) 

Cohesive interactions are implemented when the particle separation distance is twice 

the width of the square well (R = 2router) and all inelastic collisions are implemented 

when particles are in physical contact (R = 2rinner).  Because the relative position of 

the particles changes as they move between these two states, the unit normal vector 

also changes ( 1,ijij kk
��

=  at approaching cohesive interactions,  2,ijij kk
��

=  at inelastic 
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collisions, 3,ijij kk
��

=  at departing cohesive interactions).  If, however, the distance 

between the outer radius and inner radius is considered small (router~rinner) then the 

relative position is essentially unchanged throughout the entire sequence 

( 321 ,ij,ij,ij kkk
���

== ). Once this simplification is made, it is possible to combine the 

expressions for all three types of interactions (equations 3.3, 3.6 and 3.8) and derive 

an expression for the effective coefficient of restitution over the entire collision 

sequence. 

First, consider the change in the normal, relative velocity that occurs during an 

escaping-cohesive interaction (equation 3.8): 

( )
m

D
vkvk c,ij,ijd,ij,ij

42

33 −⋅−=⋅ ����
  (A8) 

Because the normal, relative velocity is unchanged during the interaction sequence, 

equation A8 can be combined with equation 3.3 to obtain the relative velocity after 

escape in terms of the relative velocity before the inelastic collision: 

( )
m

D
vkevk b,ij,ijd,ij,ij

42

23 −⋅−−=⋅ ����
  (A9) 

Equation 3.6 is then be combined with equation A9 to give the relative normal 

velocity after escape in terms of the relative velocity before the approaching-cohesive 

interaction: 

( )
m

D
vk

m

D
evk a,ij,ijd,ij,ij

44
2

2

13 −�
�
�

�
�
�
�

�
⋅+−−=⋅ ����

 (A10) 

This expression is then rearranged into the equivalent expression: 
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( )
m

D
vk

m

D
evk a,ij,ijd,ij,ij

44 2

1
2

3 −�
�

�
�
�

� ⋅+−=⋅ ����
 (A11) 

( ) ( )1
4 22

1
2

3 −+⋅−=⋅ e
m

D
vkevk a,ij,ijd,ij,ij

����
 (A12) 

( )
( )

( )2

1

2

2
13

1
4

a,ij,ij

a,ij,ijd,ij,ij

vk

e
m

D

evkvk
��

����

⋅

−
+⋅−=⋅  (A13) 

This yields the final expression for the effective coefficient of restitution: 

( )
( )2

1

2

2

1

3
1

4

a,ij,ija,ij,ij

d,ij,ij
rr,eff

e
m

D

ee
nneriouter

vkvk

vk
����

��

⋅

−
+=

⋅

⋅
−==  (A14) 

( )
( )2

1

2
2 14

a,ij,ij

rr,eff

vkm

De
ee

innerouter ��
⋅

−+==  (A15) 
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Appendix B. Equations of Motion for Two-Particle Linear Spring-and-Dashpot 

Interaction 

 

 According to the linear-spring and dashpot contact model, the equation of 

motion in the normal relative direction between two contacting spheres is given by: 

( ) ( )
0

2 2

2

=
∂

∂
++

∂
∂

t
K

t

m ij,n
nij,nn

ij,n δ
ηδ

δ
   (B1) 

where m is the individual particle mass, ij,nδ is the normal overlap between both 

particles, t is time, nK  is the normal spring constant and nη is the normal damping 

coefficient.  This equation is also the equation of motion for a damped harmonic 

oscillator. Assuming that the normal component of the initial relative velocity ( ov ) is 

known, equation B1 can be solved to yield the following expression for the normal 

overlap as a function of time: 

)texp()qtsin(
q

v
o

o
ij,n αωδ −=    (B2) 

where the intermediate constants are defined as: 

   m/K no 2=ω      (B3) 

n

n

mK2

ηα =       (B4) 

21 αω −= oq      (B5) 

The relative velocity between the particles is then given by: 

{ })qtsin()qtcos(q)texp(
q

v

t oo
oij,n αωαω

δ
−−=

∂
∂

 (B6) 
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The time at maximum overlap can be determined by setting equation B6 equal to zero 

to find the time at which the relative velocity reverses and the particles begin to 

rebound ( mt ): 

��
�

�
��
�

�
= −

o
m

q
tan

q
t

αω
11

     (B7) 

This expression can be used with equation B2 to determine the maximum overlap 

during a given collision ( max,nδ ):  

�
�

	


�

�
��
�

�
��
�

�−
�
�

	


�

�
��
�

�
��
�

�
= −−

o

o

o

o
max,n

q
tan

q
exp

q
tansin

q

v

αω
αω

αω
δ 11   (B8) 

The overall duration ( ct ) of the collision can be determined by setting equation B2 

equal to zero. 

q
tc

π=        (B9) 

Inserting this expression into equation B6 yields an expression for the normal 

component of the rebound relative velocity.  

��
�

�
��
�

� −
−=

∂
∂

=
q

expv
t

o
o

tt

ij,n

c

παωδ
   (B10) 

Because the coefficient of restitution is the negative ratio of the rebound relative 

normal velocity to the incident relative normal velocity expression for the coefficient 

of restitution ( e ) can be extracted from equation B8 as follows: 

�
�

	


�

�−
=

q
expe oπαω

     (B11) 
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Equation B11 can then be expanded into the following form by combining it with 

equations B3, B4 and B5: 

�
�
�
�

�

	










�

�
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n

η
η

    (B12) 
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Appendix C. Equations of Motion for Two-Particle Spring-and-Dashpot 

Interaction with Constant Cohesive Forces 

 

 The Hamaker model for van der Waals forces incorporates a cohesive force 

that increases in magnitude as the separation distance between two interacting 

particles decreases.  In order to account for surface asperities and avoid a singularity 

at zero separation distance, the cohesive force is kept at a constant value for all 

separation distances below a critical separation distance.  During particle contact, this 

constant cohesive force continues to be implemented, thereby altering the dynamics 

of the soft-sphere interaction.  Hence, equations derived in Appendix B are not valid 

for the cohesive case.   

The equation of motion in the normal direction between two contacting 

spheres that include a constant cohesive force is given by: 

( ) ( )
0

2 2

2

=+
∂

∂
++

∂
∂

c
ij,n

nij,nn
ij,n F

t
K

t

m δ
ηδ

δ
   (C1) 

where m is the mass of the particles, ij,nδ is the normal overlap between the particles, 

t is time, nK  is the normal spring constant, nη is the normal damping coefficient and 

cF  is a constant attractive force between the two particles. Assuming that the normal 

component of the initial relative normal velocity ( ov ) is known, equation C1 can be 

solved to yield the following expression for the normal overlap as a function of time: 

( ) ( ) ( )
n

c
ooooij,n K

F
)qtcos(texpCqtsintexpB −−+−= αωαωδ  (C2) 

where the intermediate constants are defined as: 
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   m/K no 2=ω      (C3) 

n

n

mK2

ηα =       (C4) 

21 αω −= oq      (C5) 

To solve for the additional constants, Bo and Co, the following initial conditions are 

applied: 

0
0

=
=tij,nδ       (C6) 

o

ot

ij,n v
t

=
∂

∂

=

δ
      (C7) 

Applying these initial conditions, the constants are determined to be: 

q

K

F
v

B
o

n

c
o

o

αω−
=      (C8) 

n

c
o K

F
C =       (C9) 

The normal relative velocity between the two particles as a function of time is found 

by taking the first derivative of equation C2: 

( ) ( )[ ] ( ) ( )[ ]qCBtexpqtsinCqBtexpqtcos
t oooooooo

ij,n −−−+−−=
∂

∂
αωαωαωαω

δ

 (C10) 

 

In order to derive an expression for the maximum overlap in an such an interaction, 

equation C10 would have to be set equal to zero and solved for the elapsed time at 

maximum overlap.  The maximum overlap is then determined by plugging this time 

into the right hand side of equation C2.
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Appendix D. Square Well Model: Derivation of Expression for Head-On 

Collision 

 
For the square-well potential, during an interaction between the ith and jth particles, 

the criterion for agglomerate formation is defined in Section 3.1.2 as follows: 

( ) 0
42

3 ≤−⋅
m

D
vk c,ij,ij

��
     (D1) 

where 3,ijk
�

normal unit vector pointing from the center of the ith particle to the center 

of the jth particle at the instance of a departing cohesive interaction; c,ijv
�

 is the relative 

velocity between the ith particle and the jth particle after experiencing an inelastic 

collision; D is the cohesive well depth and m is the particle mass.  This equation can 

be rearranged to obtain an expression for the minimum relative normal departing 

velocity ( c,ij,ij vk
��

⋅3 ) escape agglomeration:  

m

D
vk c,ij,ij

4
3 −=⋅ �

�
     (D2) 

In this derivation, it is assumed that the particles are undergoing a head-on normal, 

collision..  This assumption implies that the unit vector connecting particle centers 

does not change over the entire interaction sequence ( 1,ijij kk
��

=  at approaching 

cohesive interactions, 2,ijij kk
��

=  at inelastic collisions, 3,ijij kk
��

=  at departing cohesive 

interactions). 

321 ,ij,ij,ij kkk
���

==       (D3) 

  The pre-collisional (inelastic collision) velocity ( b,ij,ij vk
��

⋅2 ) is given in terms of the 

coefficient of restitution: 
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( )b,ij,ijc,ij,ij vkevk
����

⋅−=⋅ 22     (D4) (3.3) 

with the assumption that the collision is head on  

23 ,ij,ij kk
��

=       (D5) 

equations D2 and D4 can be combined to develop an expression for the cutoff pre-

collisional relative velocity 

m

D

e
vk b,ij,ij

41
2 =⋅ �

�
     (D6) 

From Chapter 3, the energy balance over the initial approaching cohesive interaction 

is given as follows: 

( )2

11

4
a,ij,ijb,ij,ij vk

m

D
vk

����
⋅+=⋅    (D7) (3.6) 

Again invoking the assumption of a head-on collision, the following simplification 

can be made: 

12 ,ij,ij kk
��

=       (D8) 

With this simplification, equations D6 and D7 can be combined to obtain the 

minimum approaching relative velocity needed for escape: 

m

D

m

D

e
vk a,ij,ij

441
21 −=⋅ �

�
    (D9) 

The result is an expression for the minimum approaching relative velocity needed to 

achieve the minimum escaping velocity (assuming a normal collision): 

�
�

�
�
�

� −= 1
14

2em

D
v esc,ij      (D10) 

This expression can then be rearranged to provide the well depth required to achieve 

the desired escape velocity for a given coefficient of restitution. 
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( )
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�
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� −
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D esc,ij      (D11) 
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APPENDIX E. Sensitivity Analysis of Fluidized Bed Simulation Parameters 
 

 

 This appendix presents a sensitivity analysis to many of the relevant 

parameters in the Eulerian-Lagrangian fluidized bed simulation.  The default 

parameter set for all of these simulations is presented in Figure 6.2, however each plot 

presents data with one of these parameters changed slightly.  All plots present data 

from a fluidization cycle in which the superficial gas velocity was increased linearly 

from 0 to 65.0 cm/s over a 0.5 second interval.  The gas velocity was then increased 

from 65.0 cm/s to 87.87 cm/s in 20 equally-spaced increments that each lasted 0.5 

seconds leading to an overall simulation time of 10.5 seconds.  

 

Fig. E-1. Sensitivity of normalized fluidization curve to normal spring constant (Kn). 
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Fig. E-2. Sensitivity of normalized fluidization curve to tangential spring constant (Kt). 

0.88
0.90

0.92
0.94
0.96

0.98
1.00

1.02
1.04

0.75 0.85 0.95 1.05 1.15 1.25

Kt = 800 (kg s-2)

Kt = 8000 (kg s-2)

Us

∆P
* 



 200 

Fig. E-5. Sensitivity of normalized fluidization curve to wall normal spring constant (Κn-wall). 
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Fig. E-3. Sensitivity of normalized fluidization curve to normal damping coefficient (ηn). 

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04

0.75 0.85 0.95 1.05 1.15 1.25

ηn = 0.79 x 10-3 (kg s-1)

ηn = 1.58 x 10-3 (kg s-1)

Us* 

∆P
* 

Fig. E-4. Sensitivity of normalized fluidization curve to tangential damping coefficient (ηt). 
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Fig. E-8. Sensitivity of normalized fluidization curve to wall tangential damping coefficient (ηt-wall). 
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Fig. E-7. Sensitivity of normalized fluidization curve to wall normal damping coefficient (ηn-wall). 
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Fig. E-6. Sensitivity of normalized fluidization curve to wall tangential spring constant (Κt-wall). 
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Fig. E-10. Sensitivity of normalized fluidization curve to solid-phase time step (∆ts). 
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Fig. E-9. Sensitivity of normalized fluidization curve to fluid time step (∆tf). 
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Fig. E-13. Sensitivity of normalized (a) fluidization curve and (b) defluidization curve  to the 
normal spring constant, using square-well model (D=5x10-4). 
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Fig. E-12. Sensitivity of normalized fluidization curve to number of computational cells in y-
direction (nmax). 
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Fig. E-11. Sensitivity of normalized fluidization curve to number of computational cells in x-
direction (mmax). 
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Fig. E-14. Sensitivity of normalized (a) fluidization curve and (b) defluidization curve  to the 
normal spring constant, using Hamaker model (A=7.49x10-12). 
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